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2000-2004 FINAL REPORT

This report presents the specific aims and accomplishments of our breast cancer research
project during the entire period of funding sponsored by the U.S. Department of the Army. It
covers our activities from September 1, 2000 to October 31, 2004.

Introduction

The overall goal of this research project is to develop and evaluate a new approach to
monitoring of oxygenated hemoglobin concentration (HbO;) of breast tumors under respiratory
interventions using near infrared (NIR) spectroscopy and imaging techniques. Furthermore, we
wish to compare and validate the optical method with concurrent measurements of tumor oxygen
tension with the use of '’F EPI relaxation of hexafluorobenzene (HFB). Once we have
rigorously established the integrated approach to tumor physiology, we will explore the
influence of three interventions expected to modify tumor physiology. A better understanding of
the interplay of these parameters in the natural history of a tumor could lead to enhanced
therapeutic approaches and provide a novel diagnostic/prognostic tool for breast cancer research
and clinical practice.

The overall project has four specific aims:

Aim 1: To evaluate a single-channel, dual wavelength, NIR, frequency-domain oximeter and the
algorithms for obtaining tumor HbO, against tumor pO, measured by "°F EPI relaxation of HFB.
Aim 2: To modify the single-channel system into a 3-channel NIR system.

Aim 3: To investigate heterogeneity of HbO; in breast tumors using the 3-channel NIR system.
Aim 4: To study the influence of three interventions on HbO; and pO, of the breast tumors.

Body of the Report

The PI and her graduate students, Mr. Jae Kim and Ms. Mengna Xia, have made
significant efforts in the last 4 years to accomplish the proposed aims, resulting in multiple
published journal papers and manuscripts that are under revision or submission. This report is
organized in such a way that we will use our published papers and manuscripts to give detailed
descriptions of specific aspects of the research studies, while the papers and manuscripts are
organized as Appendixes 1 to 10 for referral, as listed below:

Appendix 1: J. G. Kim, et al., “Interplay of Tumor Vascular Oxygenation and Tumor pO;
Observed Using Near Infrared Spectroscopy, an Oxygen Needle Electrode, and '°F MR pO,
Mapping,” J. of Biomedical Optics 8(1), 53-62 (2003).

Appendix 2: Y. Gu, et al., “Dynamic Response of Breast Tumor Oxygenation to Hyperoxic
Respiratory Challenge Monitored with Three Oxygen-Sensitive Parameters,” Applied
Optics, 42(16), 2960-2967 (2003).

Appendix 3: Hanli Liu, et al., “Near Infrared Spectroscopy and Imaging of Tumor Vascular
Oxygenation,” Methods in Enzymology: Imaging, ed. by Michael Conn, vol. 385-386, 349-
378 (2004).




Appendix 4: Y. Gu, et al.,, “Effect of Photothermal therapy on breast tumor vascular
contents: non-invasive monitoring by near infrared spectroscopy,” under revision after
submitted to Photochemistry and Photobiology (2004).

Appendix 5: Y. Gu, et al., “Estimation of blood volume fraction sampled by near infrared
spectroscopy and '°F magnetic resonance spectroscopy,” under revision after submitted to
Optics Express (2004). ‘

Appendix 6: Y. Gu, et al., “Vascular oxygen dynamics of rat breast tumors in response to
physiological interventions monitored by near-infrared spectroscopy,” under revision after
submitted to Int J Radiat Oncol Biol Phys (2004).

Appendix 7: M. Xia, et al., “Tumour oxygen dynamics measured simultaneously by near
infrared spectroscopy and ’F magnetic resonance imaging in rats,” submitted to British J.
of Cancer, (2004).

Appendix 8: Yulin Song, et al., “Investigation of breast tumor oxygen consumption by near
infrared spectroscopy,” submitted to Journal of Physics D: Applied Physics, (2004).

Appendix 9: Jae G. Kim and Hanli Liu, “Investigation of breast tumor hemodynamics using
tumor vascular phantoms and FEM simulations,” OS4 Biomedical Topical Meetings, in
Biomedical Topical Meetings on CD-ROM (The Optical Society ofAmerica, Washington,
DC, 2004), WF16.

Appendix 10: J. G. Kim et al, “Non-Uniform Tumor Vascular Oxygen Dynamics
Monitored By Three-Channel Near-Infrared Spectroscopy”, Proc. SPIE-Int. Soc. Opt. Eng.
4955, 388-396 (2003).

Aim 1: To evaluate a single-channel, dual wavelength, NIR, frequency-domain oximeter and the
algorithms for obtaining tumor HbO, against tumor pO, measured by "’F EPI relaxation of
HFB.

For Aim 1, we have conducted a variety of experimental measurements to compare tumor
vascular oxygenation with tumor tissue pO, using oxygen needle electrodes, fiber optic needle
systems (FOXY), and '°F magnetic resonance imaging system. The detailed descriptions can be
found in Appendixes 1, 2, and 7, respectively.

Aim 2: To modify the single-channel system into a 3-channel NIR system.
Aim 3: To investigate heterogeneity of HbO; in breast tumors using the 3-channel NIR system.

For both Aims 2 and 3, we have performed computer simulations, laboratory phantoms, and
experimental study to investigate breast tumor heterogeneity; Appendixes 3, 9 and 10 are giving
details for this aspect.

Aim 4: To study the influence of three interventions on HbO; and pO, of the breast tumors.

For Aim 4, we have reported our experimental results in Appendixes 2, 3, 6, and 7 with
respiratory interventions of pure oxygen (100% O,), carbogen (5% CO, and 95% 0,), and
hypercarbic air mixture (only in Appendix 6). We have also conducted extra experiments with
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administration of hydralazine to study therapeutic effects of the drug on tumor vasculature (also
see Appendix 6).

Furthermore, during the course of conducting the proposed research tasks, we have explored new
extra findings, as listed below:

1y

2)

3

During the process of scarifying the experimental tumor-bearing rats by i.v. injection of
KCl, we found that the dynamic profiles of tumor vascular deoxygenation could be used to
quantify tumor oxygen consumption rate after an appropriate mathematical model was
developed. The detailed derivation for such a model and calculation of tumor oxygen
consumption rate are given in Appendix 8.

While we were conducting °F magnetic resonance spectroscopy (MRI) measurements, we
realized that it was important to calibrate and compare the tumor blood volumes sampled
by both NIR and F MRL. We found out that the blood volumes estimated by the two
methods are different, revealing an important finding to better understand the potential use
of NIR for breast tumor prognosis (see Appendix 5).

We have investigated the capability of using the NIR technique to monitor effects of photo-
thermal therapy on breast tumor vascular contents in conjunction simultaneously with
multi-channel temperature measurements. The data have clearly demonstrated that the NIR
technique could provide insight into tumor vascular oxygenation and their association with
thermal effects during photo-thermal therapy (see Appendix 4).

Key Research Accomplishments

1) We have obtained and tested both single-channel and multi-channel NIRS systems for

simultaneous dynamic tumor oxygenation measurements at different locations of breast
tumors.

2) We have developed breast tumor hemodynamic phantoms and conducted multi-channel

NIRS measurements on the newly developed phantoms to simulate the dynamic HbO,
changes of rat breast tumors under hyperoxic inhalations. This study supports our earlier
dynamic model to explain the bi-phasic dynamic oxygenation process of breast tumors
under hyperoxic interventions.

3) We have further implemented and utilized FEMLAB computer software to mimic

dynamic light distribution in a simulated tissue vasculature so as to understand the effects
of tumor heterogeneity on the multi-channel NIR measurements.

4) We have performed a variety of animal experiments under different respiratory

interventions to correlate tumor vascular and tissue oxygenations using both NIR and
various pO, measurements.

5) Overall, we have accomplished all of our proposed aims to demonstrate that NIR

techniques could be a useful non-invasive monitoring tool for breast tumor oxygenation,
which is a key to tumor therapy planning and tumor prognosis.




Reportable Outcomes

Peer-reviewed Journals:

1.

Jae Gwan Kim, Yulin Song, Dawen Zhao, Anca Constantinescu, Ralph P. Mason, and
Hanli Liu, “Interplay of Tumor Vascular Oxygenation and Tumor pO, Observed Using
Near Infrared Spectroscopy, an Oxygen Needle Electrode, and F MR pO, Mapping,” J.
of Biomedical Optics 8(1), 53-62 (2003).

Yueqing Gu, Vincent Bourke, Jae Kim, Anca Constantinescu, Ralph P. Mason, Hanli
Liu, “Dynamic Response of Breast Tumor Oxygenation to Hyperoxic Respiratory
Challenge Monitored with Three Oxygen-Sensitive Parameters,” Applied Optics, 42(16),
2960-2967 (2003).

Hanli Liu, Yueqing Gu, Jae G. Kim, and Ralph P. Mason, “Near Infrared Spectroscopy
and Imaging of Tumor Vascular Oxygenation,” Methods in Enzymology: Imaging, ed. by
Michael Conn, vol. 385-386, 349-378 (2004).

Yueqing Gu, Wei R. Chen, Mengna Xia, Sang W. Jeong, and Hanli Liu, “Effect of
Photothermal therapy on breast tumor vascular contents: non-invasive monitoring by near
infrared spectroscopy,” under revision after submitted to Photochemistry and

Photobiology (2004).
Yueqing Gu, Ralph Mason, and Hanli Liu, “Estimation of blood volume fraction

sampled by near infrared spectroscopy and °F magnetic resonance spectroscopy,” under
revision after submitted to Optics Express (2004).

Yueqing Gu, Yulin Song, A. Contantinescu, Hanli Liu, and Ralph P. Mason, “Vascular
oxygen dynamics of rat breast tumors in response to physiological interventions
monitored by near-infrared spectroscopy,” under revision after submitted to Int J Radiat
Oncol Biol Phys (2004).

Mengna Xia, Vikram Kodibagkar, Hanli Liu and Ralph P. Mason, “Tumour oxygen
dynamics measured simultaneously by near infrared spectroscopy and °F magnetic
resonance imaging in rats,” submitted to British J. of Cancer, (2004).

Yulin Song, Jae G. Kim, Ralph P. Mason, and Hanli Liu, “Investigation of breast tumor
oxygen consumption by near infrared spectroscopy,” submitted to Journal of Physics D:
Applied Physics, (2004).

Jae G. Kim, Mengna Xia, and Hanli Liu, “Hemoglobin extinction coefficients:
importance of correct values for tissue near-infrared spectroscopy,” to be submitted to

IEEE in Medicine and Biology Magazine (2004).

10. Jae G. Kim and Hanli Liu, “Investigation of breast tumor hemodynamics: dynamic

phantoms and finite element simulations,” to be submitted to Applied Optics (2004).

Conference Presentations and Proceeding Papers:




10.

. Jae G. Kim and Hanli Liu, “Investigation of breast tumor hemodynamics using tumor

vascular phantoms and FEM simulations,” OSA Biomedical Topical Meetings, in
Biomedical Topical Meetings on CD-ROM (The Optical Society ofAmerica,
Washington, DC, 2004), WF16.

Mengna Xia, Yueqing Gu, Hanli Liu, Vikram Kodibagkar, Anca Constantinescu, Ralph
Mason, “Tumor oxygen dynamics measured simultaneously by near-infrared
spectroscopy and MR EPI imaging,” in Biomedical Topical Meetings on CD-ROM (The
Optical Society ofAmerica, Washington, DC, 2004), ThF33.

Yueqing Gu, Mengna Xia, Hanli Liu, Vikram Kodibagkar, Anca Constantinescu, Ralph
P. Mason, “Correlation of NIR spectroscopy with BOLD MR imaging of assessing breast
tumor vascular oxygen status,” in Biomedical Topical Meetings on CD-ROM (The
Optical Society ofAmerica, Washington, DC, 2004), FB6.

V. A. Bourke, Y Gu, A. Constantinescu, H. Liu and R. P. Mason, "Dynamic Optical
Interrogation Of Oxygenation In The Tumor Microenvironment”, The Eighth
International Conference on Tumor Microenvironment and Its Impact on Cancer
Therapies, Miami (South Beach), Florida, May, 2003. ‘

Y. Song, K. L.Worden, X. Jiang, D. Zhao, A. Constantinescu, H. Liu and R. P. Mason,
“Tumor Oxygen Dynamics: Comparison between 'F MR-EPI of hexafluorobenzene and
Frequency Domain NIR Spectroscopy,” Oxygen Transport to Tissue XXIV. Proceedings
of the 27th annual meeting of the International Society on Oxygen Transport to Tissue.
(Dunn, J. F. and H. M. Swartz Eds.), Advances in Experimental Medicine and Biology
530, Kluwer Acad. New York, pp225-236 (2003).

Jae G. Kim, Yueqing Gu, Anca Constantinescu, Ralph P. Mason, Hanli Liu, “Non-
Uniform Tumor Vascular Oxygen Dynamics Monitored By Three-Channel Near-Infrared
Spectroscopy”, Proc. SPIE-Int. Soc. Opt. Eng. 4955, 388-396 (2003).

Yueqing Gu, Vikram Kodibagkar, Mengna Xia, Zhiyu Qian, Jae. G. Kim, Anca
Constantinescu, Ralph P. Mason, Hanli Liu “Simultaneous determination of breast tumor
vascular oxygenation and blood volume measured with near infrared spectroscopy and
'F MRS and 'H MRI,” presented in SPIE, Photonics West, San Jose, CA, Jan. 26-29,
2003.

Jae G. Kim, Yuling Song, Hanli Liu, Anca Constantinescu, and Ralph P. Mason,
"Investigation of tumor oxygen consumption and tumor vascular oxygen dynamics in
response to pharmacological interventions by NIRS," OS4 Biomedical Topical Meetings,
Technical Digest, SuH2, Miami Beach, FL, April 7-10, 2002.

Yulin Song, Yueqing Gu, Jae G. Kim, Hanli Liu, Anca Constantinescu, and Ralph P.
Mason, “Correlation between total hemoglobin concentration and blood volume of breast
tumors measured by NIR spectroscopy and F MRS of PFOB,” OSA Biomedical Topical
Meetings, Technical Digest, SuH5, Miami Beach, FL, April 7-10, 2002.

J. G. Kim, , Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and Hanli Liu,
“Interplay of Tumor Vascular Oxygenation and pO, in Tumors Using NIRS and Needle
Electrode,” Proc. SPIE-Int. Soc. Opt. Eng. 4250, 429-436 (2001).
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Invited Talks:

1.

Hanli Liu, “Near Infrared Spectroscopy and Imaging for Tumor Prognosis and Therapy
Monitoring,” 4™ Annual Symposium, Southwestern in vivo Cancer Cellular and Molecular
Imaging Program, Dallas, Texas, November 17, 2003.

Hanli Liu, “The Physics of Biomedical Optical Imaging,” Department of Physics, Wake
Forest University, Winston-Salem, NC, October 9, 2003.

Hanli Liu, “Optical Spectroscopy and Imaging for Tumor Oximetry and Assisting
Neurosurgery in vivo,” National CLEO/QELS Annual Conference, Baltimore Convention
Center, Baltimore, Maryland, June 3-4, 2003.

Hanli Liu, “Optical Imaging/Sensing with Near Infrared Light: from organ functions to
cellular structures.” Department of Biomedical Engineering, Texas A&M University,
College Station, Texas, March 25, 2003.

Hanli Liu, “Phantom and Computer Simulation for Tumor Hemodynamic Study,”
Department of Biochemistry and Molecular Biophysics, University of Pennsylvania,
Philadelphia, PA, Nov. 18, 2002.

Hanli Liu, “Near-Infrared Spectroscopy Used in vivo for Assisting Neurosurgery and Tumor
Oximetry,” Progress in Electromagnetics Research Symposium (PIERS) 2002, Cambridge,
Massachusetts, July 1-5, 2002. '

Conclusions

From the work that we have conducted over the last four years, we can draw the following

conclusions:

1) With a multi-channel NIRS system and the newly developed tumor hemodynamic
phantoms, we have experimentally demonstrated that the previously observed, bi-phasic
temporal changes in HbO, of breast tumors under carbogen intervention can be
associated with two perfusion rates or two blood flow rates.

2) The newly developed hemodynamic phantoms are helpful to simulate the hemodynamic
processes undertaken within the tumor tissues, and the phantoms will be further used for
future breast tumor studies.

3) After having performed multiple animal experiments under simultaneous measurements
of NIR and pO,, we are convinced that breast tumor vascular oxygenation could be
correlated with tumor oxygen tension; in particular, dynamic parameters of tumor
vasculature under interventions are more associated with tumor pO, (Appendix 7).

4) Overall, we conclude that NIR techniques could be a useful non-invasive monitoring tool
for breast tumor oxygenation, which is a key to tumor therapy planning and tumor
prognosis. However, NIR imaging would be the desired further development in order to
fully characterize static and dynamic heterogeneity of breast tumor vasculature under
therapeutic interventions.
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List of personnel (not salaries) receiving pay from the research effort:
Hanli Liu, the PI;

Jae G. Kim, a graduate research assistant and a Ph.D. candidate;
Mengna Xia, a graduate research assistant and a Ph.D. candidate.
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Appendix 1

Interplay of tumor vascular oxygenation and tumor pO,
observed using near-infrared spectroscopy, an

oxygen needle electrode, and "F MR pO, mapping

Jae G. Kim

University of Texas at Arlington/University of Texas
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Joint Graduate Program in Biomedical Engineering

Arlington, Texas 76019

Dawen Zhao

University of Texas Southwestern Medical
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Yulin Song
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Hanli Liu
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1 Introduction

Abstract. This study investigates the correlation of tumor blood oxy-
genation and tumor pO, with respect to carbogen inhalation. After
having refined and validated the algorithms for calculating hemoglo-
bin concentrations, we used near-infrared spectroscopy (NIRS) to
measure changes of oxygenated hemoglobin concentration
(A[HbO,]) and used an oxygen needle electrode and °F MRI for
pO, measurements in tumors. The measurements were taken from
Dunning prostate R3327 tumors implanted in rats, while the anesthe-
tized rats breathed air or carbogen. The NIRS results from tumor mea-
surements showed significant changes in tumor vascular oxygenation
in response to carbogen inhalation, while the pO, electrode results
showed an apparent heterogeneity for tumor pO, response to carbo-
gen inhalation, which was also confirmed by '>F MR pO, mapping.
Furthermore, we developed algorithms to estimate hemoglobin oxy-
gen saturation, sO,, during gas intervention based on the measured
values of A[HbO,] and pO,. The algorithms have been validated
through a tissue-simulating phantom and used to estimate the values
of sO, in the animal tumor measurement based on the NIRS and
global mean pO, values. This study demonstrates that the NIRS tech-
nology can provide an efficient, real-time, noninvasive approach to
monitoring tumor physiology and is complementary to other tech-
niques, while it also demonstrates the need for an NIR imaging tech-
nique to study spatial heterogeneity of tumor vasculature under thera-

peutic interventions. © 2003 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1527049]

Keywords: frequency-domain spectroscopy; NIR spectroscopy; '°F MRI; tumor vas-
cular oxygenation; pO, electrode; oxygen; oximetry.

Paper 01078 received Nov. 13, 2001; revised manuscript received June 25, 2002;
accepted for publication Aug. 26, 2002. .

oxygenation of the tumors since little is known about oxygen
transfer from the tumor vasculature to tumor tissue.

It has long been known that hypoxic tumor cells are more
resistant to radiation therapy than well-oxygenated tumor
cells.! Breathing elevated oxygen (100%) or carbogen (95%
0,, 5% CO,) has been used during therapy for an attempt to
improve tumor oxygenation.>* To monitor tumor tissue 0xy-
gen tension? and its dynamic changes under respiratory inter-
ventions, various methods are available, including fiber optic
sensors,” oxygen electrodes,® and electron spin resonance.”
MRI has the further advantage of providing dynamic maps of
pO,, which can reveal tumor heterogeneity.? While NIRS
does not quantify pO,, it can indicate dynamic changes in
vascular oxygenation and has the advantage of being entirely
noninvasive, providing real-time measurements, and being
cost-effective and portable. Furthermore, it would be impor-
tant to correlate the changes between tissue pO, and vascular

Address all correspondence to Hanli Liu. Tel: 817-272-2054; Fax: 817-272-
2251; E-mail: hanli@uta.edu

The basic principle of NIRS rests on the fact that oxygen-
ated and deoxygenated hemoglobin molecules are major chro-
mophores in tissue in the near-infrared region (700 to 900
nm), and they exhibit distinct absorption characteristics. In
principle, the concentrations of oxygenated hemoglobin
[HbO,], deoxygenated hemoglobin [Hb], and oxygen satura-
tion of hemoglobin sO, can be determined by measuring light
absorption and scattering in tissue based on diffusion theory.
However, the theory works well only for large and homoge-
neous media.>'® Accurate quantification of tumor oxygenation
in our approach is currently limited to relative changes in
[HbO,] and [Hb] due to considerable heterogeneity and finite
size of tumors.

The goal of this study was to investigate the correlation of
tumor blood oxygenation and tumor pO, in response to car-

1083-3668/2003/$15.00 © 2003 SPIE
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bogen intervention and to develop a suitable algorithm to es-
timate the hemoglobin oxygen saturation of the tumor under
the intervention. Specifically, in Sec. 2 of this paper, we de-
rive accurate expressions for calculating changes in [HbO,]
and [Hb] to compensate for the differences in optical path
length at two wavelengths and an algorithm to estimate abso-
lute sO, values of the tumor during gas intervention. The
algorithms are validated through tissue-simulating phantoms
and used to estimate tumor sO, in the animal measurement
using the NIRS and mean pO, values, as mentioned in Secs. 3
and 4. In Sec. 4, we will show that while NIRS results tended
to be similar for several tumors, pO, electrode measurements
showed considerable variation even in the same tumor type,
suggesting distinct tumor heterogeneity. In Sec. 5, we discuss
the need to develop an NIR imaging technique in order to
study spatial heterogeneity of tumor vasculature under oxygen
interventions. Finally, we conclude that the NIRS technology
can provide an efficient, real-time, noninvasive approach to
monitoring tumor physiology and is complementary to other
techniques.

2 Theory and Algorithm Development

2.1 Algorithms to Quantify Changes in [HbO,] and
[Hb]

NIR spectroscopy can be used to measure hemoglobin con-
centrations and oxygen saturation since light absorptions of
HbO, and Hb are different at the wavelengths selected (758
and 785 nm). In common with our previous work,!! we as-
sumed that HbO, and Hb are the only significant absorbing
materials in tumors within the selected NIR range of 700 to
900 nm. Based on Beer-Lambert’s law, the absorption coeffi-
cients o, comprise the extinction coefficients for deoxyhemo-
globin (&yy,) and oxyhemoglobin (eypg,) multiplied by their
respective concentrations:

pl®=23{e S Hb]+ e o5, [ HBO, ]}, )
wiB=23{]F[Hb]+ /i, [ HbO, T}, @)

where the factor of 2.3 results from the different definitions of
M, and ¢ in relation to the incident and detected optical in-
tensities. The conventional definitions for u, and & are I
=1y exp(—u,L) and I=1,107%%%, respectively, where I, and
I are the incident and detected optical intensities in transmis-
sion measurement of a nonscattering medium, C is the con-
centration of hemoglobin measured in millimoles per liter,
and L is the optical path length through the medium in centi-
meters. Therefore, we should have a relationship of u,
=23¢C.

We have not yet completed a suitable algorithm to com-
pute u, of rat tumors due to their finite size and high hetero-
geneity. Instead of diffusion theory, we modified Beer-
Lambert’s law, i.e., u,=2.3eC=(2.3/L)log(ly/]), to analyze
the data using only amplitude values to quantify changes in
[HbO,] and [Hb]. In this case, I, is the detected light inten-
sity when no absorption is present. Specifically, changes in
absorption coefficient of the tumor, Au,, between baseline
and transient conditions under respiratory intervention can be
expressed as
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. blood-perfused

Apo=par— pap=2.31l0g(4dp/A7)/L, 3)

where L is the optical path length and 4 and 4 7 are baseline
and transient amplitudes of the measured optical signals, re-
spectively.

By manipulating Egs. (1) to (3), changes of [HbO,] and
[Hb] due to an intervention can be expressed using the trans-
mitted amplitudes of the light through the tumor as:

log(Ap/A7)"?
A[Hb02]=—11.73*—g—(z—”75—8T—
log(Ag/A7)™
+14.97*—g£—1f785—T)—, )
log(dp/A7)™® log(45/47)"™
A[Hb]=8.09* & L D _ 673w 08 L,
)
where L™® and L7 are optical path lengths between the

source and detector at 758 and 785 nm, respectively. The units
of A[HbO,] and A[Hb] in Egs. (4) and (5) are in millimolar.
The constants given in the equations were computed with the
extinction coefficients for oxygenated and deoxygenated he-
moglobin at the two wavelengths used.'? The constant values
are slightly different from our previous report!! due to a slight
shift in wavelength (782 to 785 nm) from one laser source,
but the actual differences between the values of A[HbO,] and
A[Hb] calculated from our previous report and from Egs. (4)
and (5) are little and negligible.

In principle, L7® and L7® given in Egs. (4) and (5) are not
constants, depending on both the source-detector separation
and the optical properties of the measured medium. Optical
path length in a scattering medium L has been expressed'” as
the source-detector separation d multiplied by a differential
pathlength factor (DPF), ie., L=d*DPF. DPF values of
tissues should be wavelength- and
oxygenation-dependent, and they have been studied inten-
sively for muscles'* and brains'® with approximate values of 4
to 6 and 5 to 6, respectively. Little is known about DPF for
tumors although a DPF value of 2.5 has been used by others.'¢
In our approach, we define two parameters, By,oo and By,
as ratios between DPF78 and DPF™’ for oxygenated blood
and deoxygenated blood, respectively, as given below:

ﬁHb02=(W 778

>

DPF758) (L758
HbO2

) HbO2

ﬁ (DPF758) (L758) (6)
W= R p %) T\ 7785 .
DPF Hb L Hb

Substituting Eq. (6) into Eqgs. (4) and (5) leads to

1173 [45\"® Ap\™®
- logl —| +14.971og|—
A[HbO,]= Bmoz \Ar Ay
2 dXDPF, ’
()




8.09 AB 758 AB 785
—logl—] —6.73log| —
T Ar

dXDPF, ?

(®)

where DPF, is a mean DPF at 785 nm for both oxygenated
and deoxygenated states, i.e., DPFy=DPFr,=DPFly,
which is assumed to be the same for both A[HbO,] and
A[Hb). This assumption is based on the fact that the absorp-
tion difference between oxygenated and deoxygenated blood
at 785 nm is much smaller than that at 758 nm. The maximal
relative error caused by this assumption in tumor oxygen in-
terventions was estimated to be less than 12%, and detailed
justification and discussion were given in Ref. 11. Since our
focus is on dynamic changes in tumor [HbO,] under carbo-
gen intervention, we simplify Egs. (7) and (8) to Egs. (9) and
(10) by including DPF, in the unit:

1173 [Ag\T® Ag\™
- log{ —] +14.97logl —

A A
A[HbO,]= Buvoz T y T ’
)

8.09 B 758 AB 785

F—-log( A_) —6.73 log( A_)
A[Hb) =~ —, (10)

where the units for Egs. (9) and (10) become mM/DPF,.

To further quantify B0, and By, we associate L to u,
by L=(V3/2)d (u./1.)"?, where u! is the reduced scatter-
ing coefficient, according to Sevick et al.!° and Lin.!” Equa-

tion (6) becomes

L1758 M785 172 785\ 12
a
.3Hb02=(f7§) =[(_7§§) = (;ﬁ) } )
HbO2 Ha HbO2 HbO2
(11)
~ 1758 B e 12 B £785\ 12 ‘

Bm= 75| S|\ 7w =1 g7 , (12)

Hb ”‘a Hb Hb

where u,=2.3¢C and u, values at two wavelengths are
canceled, assuming that u! (758 nm)=pu, (785 nm). By
calculating the hemoglobin extinction coefficients at 758 and
785 nm,'? we obtained B0, =1.103 and By, =0.9035. Sub-
stituting these vatues into Egs. (9) and (10) results in the final
expressions for A{HbO,] and A[Hb]:

A\ Ap\ 7

—10.63 log(:q—) +14.97 log( A_)

T T

A[Hb02]= d ’

(13)

Ag\75 PR

8.95log x —6.73 log i

A[Hb]= L L (14)

d
A[Hbyy] can also be obtained by adding Eqgs. (13) and (14):
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A[Hby, )= A[HbO, 1+ A[Hb]
AB 758
- 1.68log Z;

AB 785
+8.241og| ~*
T

d
(15)

Equations (13) to (15) will be used in calculating A[HbO,],
A[Hb], and A[Hb,,] in tissue phantoms and tumors during
gas interventions in this paper.

The units for A[HbO,], A[Hb], and A[Hb,] in Egs.
(13) to (15) are mM/DPF,, which is still a variable, depend-
ing on the optical properties of the tumor at a particular wave-
length. Since our study involves changes in [HbO,] due to
respiratory challenges, we can obtain a normalized A[HbO,]
at its maximal value, i.e., A[HbO,}/A[HbO, ]y, to €limi-

nate the unit so as to minimize the effect of DPF on our

results. Next, we will show that a normatized A[HbO,] has a
close relationship with hemoglobin oxygen saturation sO, .

2.2 Relationship Among Normalized A[HbO,], sO,
and Blood pO,

We define sO, values of the measured sample at the baseline,
transient state, and maximal state, i.e., (8O3)pase, (801),, and
(803) max » TESPECtively:’

= [Hboz]base
(Soz)basef’m7 (16)
_ [HbO,],
(soz)l_[Hbtotal]l ’ (17)

$O5) max= P,
( Z)max [Hbtotal]max

where [HbO, Jpase , [HPO, 1,, and [HbO, ], are correspond-
ing to oxygenated hemoglobin concentrations at the respec-
tive state. Mathematically, it follows that

A502 _ (Soz)t"' (Soz)base
ASOZ max (Soz)max_ (SOZ)base

( [Hboz]: [Hboz]base)
_ [ Hbtotal] t [ Hbtotal] base
- ([Hboz]max [Hboz]base) ’ (19)

[ Hbtotal] max [Hbtotal] base

During a cycle of oxygenation and deoxygenation in a
blood-perfused tissue, if the total concentration of hemoglobin
remains constant, we have the following -condition:
[Hbtotal]max“_’[Hbtotal]t:[Hbtotal]base~ In the case of tumors
under gas intervention, total hemoglobin concentration does
not always remain constant, but the changes in [Hb], ap-
peared relatively small in comparison to the changes in
[HbO,].'1 It is reasonable to assume that A[Hb,,]
<[Hbtota]]’ ie, the condition of [Hbtotal]maxz[Hbtotal]l
=[Hbygta lbase Still holds for the tumor under oxygen/carbogen
interventions. Then, Eq. (19) becomes
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AsO,  (50,),~(sOp)pse _ A[HbO,]
ASOZmax (502)max—(soz)base A[Hboz]max‘

To further make cotrelation between the normalized
A[HbO,] and blood pO,, Hill’s equation'® can be combined
with Eq. (20) to characterize oxygen transport in the tissue
vasculature:

(p0§)"

A[HbOz] ~ (stio)n_*_(pog)n“(soz)base

A[HbOZ]max B (SOZ)max_(SOZ)base
o)
o+ (p0) .
- a—b ’ ( )

where pOlzg is the oxygen partial pressure in blood, P?o is the
oxygen partial pressure in blood at sO,=50%, n is the Hill
coefficient, a=(80,) max » and b=(50,)p,s - This equation as-
sociates the normalized AHbO, to blood pO, in tissues. It
indicates that normalized A[HbO,] measured from tissues/
tumors under gas interventions is associated with normalized
sO, between (8O, )pase and (8O3 ) max Of the tissue/tumor, and it
predicts the relationship between the normalized A[HbO,]
and blood pO, values in the tissue/tumor vasculature.

In our phantom studies, the measured pO, values are con-
sidered as blood pO, in tissue vasculature since blood is well
mixed in the solution (see details in Sec. 3.4). Therefore, val-
ues of Pfo, n, a, and b in Eq. (21) can be fitted to the experi-
mental data, allowing us to determine the initial, transient, and
maximal values of sO, of the simulating tissue due to oxygen/
nitrogen interventions.

2.3 Relationship Between Normalized A[HbO,] and
Tissue/Tumor pO,

In principle, blood pO, and tissue pO, are different, depend-
ing on the relative distance between a capillary vessel, oxygen
consumption, and the location where pO, is measured.'” It is
shown that there exists a constant pressure drop between
blood pO, and tissue pO, as the blood passes through a cap-
illary vessel. Therefore, it is reasonable to assume

pOS=a-pO], (22)

where pOf and pOJ are blood pO, and tissue pO, values,
respectively, and a is a constant representing an oxygen par-
tial pressure drop from blood pO, to a local tissue pO,. Sub-
stituting Eq. (22) in Eq. (21) results in

0"
A[HBO,]  (P5)"+(pO})" ”
A[HDBO, | pex a—b ’ 23)

where PSTO is the oxygen partial pressure in tissue resulting
from P?o , and the meanings of n, a, and b remain the same as
in Eq. (21). This equation shows how normalized A[HbO,]
measured from tissue under gas interventions is associated
with both tissue pO, and normalized sO, between (SO;)pace
and (80;) .y in the tissue vasculature.
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Ideally, when both A[HbO,] and tissue pO, are measured
at the same physical location, the maximal and initial oxygen
saturations, i.e., a and b in Eq. (23), of the measured tissue
vasculature can be obtained by fitting Eq. (23) to the mea-
sured data. In our tumor study, we then can estimate the maxi-
mal and initial hemoglobin oxygen saturations of the tumor
by fitting the measured values of global normalized A{HbO, ]
and global tissue pO,, which result from adding up all local
pO, values obtained from '°F MR pO, mapping.

3 Materials and Methods
3.1 Tumor Model

Dunning prostate rat tumors (eight R3327-HI and four
R3327-AT1)* were implanted in pedicles on the foreback of
adult male Copenhagen rats, as described in detail
previously.2! Once the tumors reached approximately 1 cm in
diameter, the rats were anesthetized with 0.2 m! ketamine hy-
drochloride (100 mg/mL; Aveco, Fort Dodge, IA) and main-
tained under general gaseous anesthesia with isoflurane in air
(1.3% isoflurane at 1 dm*/min air) through a mask placed over
the mouth and nose. Tumors were shaved to improve optical
contact for transmitting light. Body temperature was main-
tained by a warm water blanket and was monitored by a rec-
tally inserted thermal probe connected to a digital thermom-
eter (Digi-Sense, model 91100-50, Cole-Parmer Instrument
Company, Vernon Hills, IL). A pulse oximeter (model 8600,
Nonin, Inc., Plymouth, MN) was placed on the hind foot to
monitor arterial oxygenation (S,0,). Tumor volume ¥V (in
cubic centimeters) was estimated as V=(47/3) [(L+W
+H)/6], where L, W, and H are the three respective or-
thogonal dimensions.

In general, the source-detector fiber separation was about 1
to 1.5 cm in transmittance geometry, and thus the maximal
tumor volume interrogated by NIR light can be estimated as
follows. By the diffusion approximation, the optical penetra-
tion depth from the central line between the source and detec-
tor is about one half of the separation (source-detector
separation=d). The total tumor volume interrogated by NIR
light can be estimated as the spherical volume with a radius of
one half of d, i.e., (/6)d°. In this way, the estimated tumor
volume interrogated by NIR light is in the range of 0.5 to 2.0
em®, depending on the actual source-detector separation.

3.2 NIRS and pO; Needle Electrode Measurements

Figure 1 shows the schematic setup for animal experiments
using both NIRS and a pO, needle electrode. A needle type
oxygen electrode was placed in the tumor, and the reference
electrode was placed rectally. The electrodes were connected
to a picoammeter (Chemical Microsensor, Diamond Electro-
Tech Inc., Ann Arbor, MI) and polarized at —0.75 V. Linear
two-point calibrations were performed with air (21% O,) and
pure nitrogen (0% O,) saturated saline buffer solutions before
the electrode was inserted into the tumor, and we estimated an
instrumental precision of 2 to 3 mm Hg. Measurement points
of pO, were manually recorded, while the NIRS data were
acquired automatically. Measurements of pO, and NIRS were
initiated, while the rats breathed air for ~10 min to demon-
strate a stable baseline. The inhaled gas was then switched to
carbogen for 15 min and switched back to air.




Fig. 1 Schematic experimental setup of one-channel, near-infrared,
frequency-domain 1Q instrument for tumor investigation in vivo. The
S-mm-diameter fiber bundles deliver the laser light, comprising two
wavelengths (758 and 785 nm), and detect the laser light transmitted
through the implanted tumor. The pO, needle electrode measures
tumor tissue pO, .

Our NIR system as shown in Figure 1 (Refs. 11 and 22) is
a homodyne frequency-domain photon migration system
(NIM, Inc., Philadelphia, PA) and uses commercially avail-
able in-phase and quadrature (IQ) demodulator chips to de-
modulate the detected, amplitude-modulated optical signal.

3.3 Experimental Validation for By,0, and By;
Values

In order to validate Bypo, and By, values, we conducted
phantom calibration measurements. We used 2 1 of 0.01 M
phosphate buffered saline (P-3813, Sigma, St Louis, MO) and
1% Intralipid (Intralipid® 20%, Baxter Healthcare Corp.,
Deerfield, IL) with pH="7.4 at 25 °C. To deoxygenate the so-
lution, 14 g of baking yeast was dissolved in the phantom
solution, and pure oxygen gas was used to oxygenate the so-
lution. After the yeast was well mixed in the solution, 3 ml of
human blood was added twice. When the blood was fully
deoxygenated, pure oxygen was introduced in the solution to
oxygenate the blood. After the blood was fully oxygenated,
oxygen blowing was stopped in order to deoxygenate the so-
lution with yeast again.

Equations (4) and (5) were applied to the raw amplitude
data to calculate A[HbO,] and A[Hb]. Large unexpected and
erroneous fluctuation of A[Hbyml (=A[HbO,]+ A[Hb])
were seen during the oxygenation and deoxygenation cycles
(Figure 2). However, when we applied Egs. (13) to (15) to
calculate A[HbO,], A[Hb], and A[Hb,, ], A[Hbywm] re-
mained constant during the oxygenation and deoxygenation
cycles as expected. This demonstrates that the values of
Brvoz=1.103 and By, = 0.9035 are correct and necessary to
compensate the differences in DPFs caused by the two differ-
ent wavelengths.

3.4 Tissue Phantom Solution Model

In order to study the relationship between pO, and A[HbO,]
in regular tissues, we conducted a tissue-simulating phantom
study by using the liquid solution similar to that mentioned
above. In normal tissues, there are several steps of oxygen
transport from the blood to tissue cells.”® In the tissue-
simulating phantom, blowing oxygen gas represents oxygen-
ation process of blood in the lungs, and blowing nitrogen gas
simulates deoxygenation process of blood in the tissues. The
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Fig. 2 Simultaneous dynamic changes of A[HbO,}, A[Hb], and
A[Hb}ia in the phantom solution measured using NIRS. The gray
solid curve is for A[Hb],o without using Brio, and By, values. Oxy-
gen consumption by yeast produced deoxygenated blood and blow-
ing oxygen restored oxygenation. During the oxy- and deoxygenation
process, A[HbJ,. is supposed to be a constant. However, as we can
see here, A[Hb],, calculated without B0 and By, values shows
the fluctuation during the oxy- and deoxygenation while A[HbJcal
calculated using Bupo; and By, values shows the veracity of these
modified algorithms.

differences between the tissue-simulating phantom and real
tissues are that there is no capillary membrane in the phan-
tom, and that the phantom is more homogeneous than real
tissues. Capillary membranes have high permeability of oxy-
gen, so oxygen transport from blood to tissues crossing the
capillary membranes occurs straightforwardly. Furthermore,
normal tissues are well vascularized, and the NIR techniques -
are more sensitive toward measuring small vessels and vascu-
lar bed of the tissue.2* Therefore, vasculature of normal tis-
sues has been simulated by a turbid solution mixed with blood
as a simplified laboratory model in NIRS measurements for
oxygen transport from blood to normal tissues.!®!%??

The experimental setup shown in Figure 3 was made to
simulate tumor oxygenation/deoxygenation. Oxygen needle
electrodes, a pH electrode, and a thermocouple probe (model
2001, Sentron, Inc., Gig Harbor, WA) were placed in the so-
lution, and the gas tube for delivery of N, or air was placed
opposite the NIRS probes to minimize any liquid movement
effects. Source and detector probes for the NIRS were placed
in reflection geometry with a direct separation of 3 cm. The

pH clectrode and
Thermocouple PO,
Gas tube electrode

Top View

Source Pro

44— Reference

Jectrod

Source/
Detector Probe

Gas tube pH electrode and
Thermocouple

1% Intralipid solution  Strret
with Rabbit Blood

Fig. 3 Experimental setup for phantom study using 1% Intralipid in
saline buffer. NIRS probes were placed in reflectance mode, while the
gas bubbler was placed opposite to minimize liquid movement ef-
fects. After adding 2 ml of rabbit blood to a 200 ml solution, nitrogen
gas and air were introduced to deoxygenate and oxygenate the solu-
tion, respectively.
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solution was stirred constantly to maintain homogeneity by a
magnetic stirrer at ~37 °C. Fresh whole rabbit blood (2 mL)
was added to the 200 mL solution before baseline measure-
ment. Nitrogen gas and air were used to deoxygenate and
oxygenate the solution, respectively.

3.5 MRI Instrumentation and Procedure

To support the findings obtained from the pO, electrode mea-
surements and NIRS, we conducted MRI experiments using
an Omega CSI 4.7 T 40 cm system with actively shielded
gradients. A homebuilt tunable 'H/'°F single turn solenoid
coil was placed around the tumor. 45 uL hexafluorobenzene
(HFB; Lancaster, Gainesville, FL) was administered directly
into the tumor using a Hamilton syringe (Reno, NV) with a
custom-made fine sharp (32 gauge) needle and HFB was de-
liberated dispersal along several tracks to interrogate both
central and peripheral tumor regions, as described in detail
previously.> HFB is ideal for imaging pO, because it has a
single resonance and its relaxation rate varies linearly with
oxygen concentration. 'H images were acquired for anatomi-
cal reference using a traditional 3-D spin-echo pulse se-
quence. Conventional 1°F MR images were taken to show the
3-D distribution of the HFB in the tumor. '°F MR images
were directly overlaid over 'H images to show the position of
the HFB in that slice. ‘
Tumor oxygenation was assessed using fluorocarbon relax-
ometry using echo planar imaging for dynamic oxygen map-
ping (FREDOM) based on '°F pulse burst saturation recovery
(PBSR) echo planar imaging (EPI) of HFB.?® The PBSR
preparation pulse sequence consists of a series of 20 nonspa-
tially selective saturating 90 deg pulses with 20 ms spacing to
saturate the '°F nuclei. Following a variable delay time 7, a
single spin-echo EPI sequence with blipped phase encoding
was applied?® Fourteen 32X 32 PBSR-EPI images, with 7
ranging from 200 ms to 90 sec and a field of view (FOV) of
40X 40 mm, were acquired in 8 min using the alternated re-
laxation delays with variable acquisitions to reduce clearance
effects (ARDVARC) acquisition protocol.** An R1(=1/T1)
map was obtained by fitting the signal intensity of each voxel
of the 14 images to a three-parameter relaxation model by the
Levenberg-Marquardt least-squares algorithm:

Yalisj)=A(i,7)-[1= (1 + W)exp(—R1(i,j) - 7,)]
(24)

where y,(i,j) is the measured signal intensity corresponding
to delay time 7, (the n’th images) for voxel (i, j), 4(i,7) is the
fully relaxed signal intensity amplitude of voxel (i, j), Wis a
dimensionless scaling factor allowing for imperfect signal
conversion, R1(i,j) is the relaxation rate of voxel (i, j) in
units of sec™!, and 4, W, and R1 are the three fit parameters
for each of the 32X 32 voxels. Finally, the pO, maps were
generated by applying the calibration curve, pO, (mm Hg)
=[R1(s~!)—0.0835]/0.001876 at 37°C, to the R1 maps.?
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Fig. 4 Simultaneous dynamic changes of A[HbO,] and pO, in
R3327-Hi rat prostate tumors using NIRS and pO, needle electrode.
(a) A small tumor (1.5 cm?®) showed a rapid pO, response (case 1),
whereas (b) a bigger tumor (3.1 cm®) showed a slower pO, response
(case 2). {c) In a third tumor (1.6 cm?) where regional baseline pO,
was <5 mm Hg, there was no pO, response (case 3). The unit of
A[HbO,] is mM/DPF, where DPF is equal to the optical path length
divided by the source-detector separation. Dotted vertical line marks
the time when the gas was changed.

4 Results
4.1 Tumor Study Results

We have measured relative changes of [HbO,], [Hbl,
[Hbyr], and tumor tissue pO, (electrode) from eight Dun-
ning prostate R3327-HI tumors, and Figure 4 shows three
representative data sets. Figure 4(a) shows the temporal pro-
files of A[HbO,] and pO, in a small Dunning prostate
R3327-HI tumor (1.5 cm®) measured simultaneously with
NIRS and the pO, needle electrode during respiratory chal-
lenge. After a switch from air to carbogen, A[HbO,] in-
creased rapidly, along with tumor tissue pO, . Figure 4(b) was
obtained from a large tumor (3.1 cm®): the electrode readings
showed a slower pO, response, whereas the NIRS response
was biphasic, which has been a commonly observed dynamic
feature.! In a third tumor (1.6 cm®), NIRS behaved as before,
but pO, did not change [Figure 4(c)].
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Fig. 5 Dynamic changes of A[HbO,] and pO; in two R3327-AT1 rat
prostate tumors measured sequentially using NIRS and '*F MR pO,
mapping. The solid curves represent A[HbO,], and the solid lines
with solid circles represent mean pO, = SE (standard error) of 21 (a)
and 45 (b) voxels of the respective tumor. Dashed lines with open
symbols are 4 representative voxels for each case. After a gas
switched from air to carbogen, the mean pO, values of both tumors
increased, but individual voxels showed quite different responses, in-
dicating high heterogeneity in the tumors. The tumor sizes were 3.2
cm? and 2.7 cm? for (a) and (b), respectively.

In four tumors from a separate subline (Dunning prostate
R3327-AT1), NIRS and °F MRI were taken sequentially with
carbogen challenge, and two representative data sets are
shown in Figure 5. NIRS response showed vascular oxygen-
ation changes as before, and FREDOM revealed the distinct
heterogeneity of the tumor tissue response. Initial pO, was in
the range of 1 to 75 mm Hg, and carbogen challenge produced
pO, values in the range of 6 to 350 mm Hg. Representative
voxels are shown in each figure by dashed lines with open
symbols. In addition, mean pO, values were calculated by
averaging all available pO, readings over 21 and 45 voxels
for the two respective tumors. We usually obtain pO, tempo-
ral profiles from individual voxels among 200 to 400 voxels
in a tumor during the entire intervention period. The pO,
readings presented here were picked to show heterogeneity of
the tumor. In Figure 5(a), the closest distance between the two
voxels is 1.25 mm (between ¢ and [J), and the furthest dis-
tance is 7.6 mm (between X and A). In Figure 5(b), the
closest distance is 3.6 mm (between X and A) and the fur-
thest distance is 16 mm (between X and [J). These indeed
showed that tumor pO, responses to carbogen intervention
could be quite different at different locations. Notice that Fig-
ure 5(a) showed spikes of A[HbO,] during the measurement.
We expect this to be caused by sudden changes in rat respi-
ratory circulation or motion, rather than resulting from simple
instrumental noise. It is also seen that mean pO, values have
displayed a consistent increase when A[HbO,] showed
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Fig. 6 Simultaneous dynamic changes of A[HbO,], A[Hb],., and
pO, in the phantom solution measured using NIRS and pO, needle
electrode. The dark solid curve is for A[HbO,], the lighter solid line is
for A[Hb],rt, and the solid circles show pO, values in the phantom
solution. After ~3 min baseline, the bubbling gas was changed from
air to nitrogen to deoxygenate the solution and then switched back to
air to reoxygenate the solution. The unit of A[HbO,] is mM/DPF.

spikes, suggesting that such spikes may result from changes in
rat physiological conditions.

4.2 Tissue Phantom Study Results

Figure 6 shows a temporal profile for A{HbO, ] and pO, mea-
sured from the tissue phantom during a cycle of gas change
from air to nitrogen and back. The first three minutes were
measured as a baseline after adding 2 ml blood. Bubbling
nitrogen deoxygenated the solution and caused the pO, values
to fall; A[HbO,] declined accordingly with a small time lag.
After the bubbling gas was switched from nitrogen to air, both
A[HbO,] and pO, started to increase simultaneously, but the
recovery time of A[HbO,] to the baseline was faster than that
of pO,. The small time lag between the changes of A[HbO,]
and pO, is probably due to the allosteric interactions between
hemoglobin and oxygen molecules. According to the hemo-
globin oxygen-dissociation curve,'®?” oxyhemoglobin starts
to lose oxygen significantly when pO, falls below 70 mm Hg
at standard conditions (pH=7.4, pCO,=40 mm Hg, and
temperature=37 °C). The same principle can explain why
A[HbO,] has a faster recovery than that of pO,. Figure 6
shows that A[HbO,] is already saturated when pO, is at 50
mm Hg, while the solution was still being oxygenated. This
may be due to low pCO, in the solution where this can shift
the oxyhemoglobin dissociation curve to the left, causing oxy-
hemoglobin to be saturated at lower pO,. Importantly,
A[Hb] s remained unchanged, as expected, during a cycle
of deoxygenation and oxygenation.

4.3 Correlation between pO, and Normalized
A[HbO,]

For Tissue Phantoms. Figure 7(a) replots the data given in
Figure 6, showing the relationship between normalized
A[HbO,] and pO, measured from the tissue phantom during
the oxygenation (air blowing) period after the nitrogen blow-
ing. Open circles are the measured data, and the solid line is
the fitted curve using Eq. (23). The error bars for the data
were not shown here since they are smaller than the symbols
of the data points. For the curve fitting procedure, we used a
nonlinear curve-fitting routine provided through Kaleida-
Graph (Synergy software, Reading, PA). The fitted parameters
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Fig. 7 Changes of tissue pO, with normalized changes of oxygenated
hemoglobin (a) in the phantom solution using the NIRS and pO,
needle electrode and (b} in tumors measured with NIRS, pO, needle
electrode, and '°F MR pQ, mapping. In (a), the open circles are mea-
sured data and the solid line is the fitted curve using Eq. (21). This
shows that Eq. (21) works well in a homogeneous system. In (b), all
the tumor data are shown indicating that tumors are highly heteroge-
neous for pO, response to carbogen inhalation. Open symbols show
local pO, changes (from Figure 4) and solid symbols show the mean
pO, changes (from Figure 5) during gas intervention. To estimate glo-
bal sO, in tumors during respiratory challenges, we applied Eq. (23)
to Figure 5(a), indicating sO, changes during carbogen inhalation
when compared via tumor pO, .

are n=19, P;=152mmHg, [50;]pc=0%, and
[50,]max=99% with R=0.997 and minimized chi-square.
The fitted values of [ SO, Jase and [ 8O, ] max are in good agree-
ment with the expected values, since the corresponding pO,
values are 0 and 160 mm Hg, respectively. This agreement
validates Eq. (23) and further indicates that we can measure
approximate sO, values during the gas interventions in a ho-
mogeneous system by fitting the experimental data using Eq.
(23) even though we do not measure absolute [HbO,]. The
Hill coefficient (n) and pO, value at 50% of sO, (Psy) are
smaller than the values from a standard oxyhemoglobin satu-
ration curve, probably due to the shift of the oxyhemoglobin
dissociation curve.

For Tumor Study. Figure 7(b) replots the data given in Figures
4 and 5, showing a direct relationship between the normalized
A[HbO,] and tissue pO, in the tumors. NIRS results tended
to be similar for several tumors, and pO, electrode measure-
ments showed considerable variation even in the same tumor
type, suggesting distinct tumor heterogeneity. This was sub-
stantiated by the '°F MR pO, mappings (Figure 5): indeed, in
some cases, pO, values did not change with respiratory chal-
lenge, especially when baseline pO, values were lower than
10 mm Hg.

Equation (23) can be used to estimate values of [SO; Jyase
and [sO,] .y for the tissue-simulating phantom (a homoge-
neous system). However, the relationship fails for heteroge-
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neous systems such as tumors. The NIRS measurements in-
terrogate a large volume of tumor tissue, giving a global value
of normalized A[HbO,], whereas the pO, readings are local
near the tip of the needle electrode. However, to estimate
mean values of [$0;]paee and [80;]max, it is reasonable to
compare the global normalized A[HbO,] with global tissue
pO,, which can be obtained by summing up all local pO,
readings at different pixels measured from the '°F MRI map-
ping, as done in Sec. 4.1 and shown by solid lines in Figure 5.
The data shown in Figure 7(b) with solid symbols are the
global mean pO, values calculated from the corresponding
MRI data. The solid fitting curve shown in Figure 7(a) is
obtained from the mean pO, data given in Figure 5(a). In this
case, the fitting parameters are Psy, [5O3 ]yase> and [8O;]nax
with a fixed Hill coefficient n to be the same as that under
standard conditions. The best fitting curve of Eq. (23) is
shown in Figure 7(b), having P5y=20.6*+4.1 mm Hg,
[80,]pase=37+13%, and [sO,]=100% with R=0.985
and goodness-of-fit x*=0.031. Estimated errors for Ps, and
[80; ]pase are not insignificant and a better fit could be found
by measuring pO, with better temporal resolution.

5 Discussion and Conclusion

Tumor oxygenation involves a complex interplay of multiple
compartments and parameters: blood flow, blood volume,
blood vessel structure, and oxygen consumption. NIRS pro-
vides a global noninvasive estimate of average vascular oxy-
genation encompassing arterial, venous, and capillary com-
partments. In agreement with our previous observations,! the
A[HbO, ] response is often biphasic, which we believe repre-
sents rapid elevation of arterial oxygenation, followed by
more sluggish capillary components.

Comparison with simultaneous electrode measurements in-
deed revealed that tumors are heterogeneous. Like NIRS mea-
surements, pO, electrodes provide rapid assessment of pO,
facilitating real-time observation of dynamic changes. In Fig-
ure 4(a), pO, starts at a baseline value ~15 mm Hg and
increases rapidly in response to respiratory challenge with
carbogen. Indeed, the rate approaches that of the vascular
compartments. In a second tumor [Figure 4(b)}], where the
interrogated location showed a slightly lower pO,, the tissue
response was more sluggish. For a third HI tumor, local base-
line pO, was found to be <5 mm Hg, and this did not change
with carbogen inhalation despite the response observed by
NIRS. This suggests a danger of comparing a global vascular
measurement with regional tumor pO,, since tumors are
known to be highly heterogencous. This also demonstrates an
essential need for NIR imaging of tumors to provide regional
tumor vascular oxygenation details.

FREDOM measurements in Figure 5 revealed the hetero-
geneity in baseline oxygenation within individual tumors of
this second tumor subline as also reported previously.2’ Base-
line pO, ranged from 1 to 75 mm Hg, and response to carbo-
gen was variable in terms of rate and extent, as also seen for
the HI subline using ¢lectrodes (Figure 4). As with the elec-
trodes, the better oxygenated tumor regions showed a faster
and greater response to carbogen inhalation. The oxygen elec-
trode measurements in Figure 4 showed a maximum pO, of
around 45 mm Hg, though we have observed values as high as
95 mm Hg using oxygen needle electrode. Observations using




the fluorescence-based OxyLite™ fiber-optic devices for mea-
suring HI tumor reached the maximum detectable pO, of 100
mm Hg during carbogen inhalation.” FREDOM has shown
values of less than 5 mm Hg and greater than 160 mm Hg
under air breathing conditions, and reaching 350 mm Hg in
HI tumors while breathing carbogen.® Each method indicates
that tumors are highly heterogeneous, but it has been shown
that there can be a positive linear relationship between base-
line pO, and maximum pO, during carbogen inhalation in the
Dunning prostate AT1 tumor line ?

The phantom measurements indicate and validate the reli-
ability of the NIRS technique and also prove that normalized
A[HbO,] is closely related to the normalized hemoglobin-
oxygen dissociation curve. The phantom data confirmed that
we can obtain absolute sO, values in a homogeneous system
by measuring both A[HbO,] and pO,. We could estimate
mean sO, values of the tumor under intervention using global
A[HbO,] and averaged pO, readings, and the fitting errors
are expected to be improved by having more data points.
Measuring regional tumor vascular oxygenation by NIR im-
aging of tumors should allow us to correlate local A{HbO,]
and pO, and to understand the oxygen transport process from
tumor vasculature to tumor tissue, and this is the direction of
our future work.

Both NIRS and electrodes offer essentially real-time mea-
surement of changes in oxygenation, which can be rapid (Fig-
ure 4). Indeed, the inflow kinetics of vascular O, detected by
NIRS are similar to those previously reported in the HI tumor
line following a bolus of the paramagnetic contrast agents
Gd-DTPA.?® FREDOM has lower temporal resolution, but re-
veals the tumor heterogeneity and differential response of re-
gions exhibiting diverse baseline pO,. The results here cor-
respond closely with more extensive observation.>®*?> While
FREDOM currently requires 6.5 min per pO, map, we have
previously demonstrated an alternative data acquisition proto-
col achieving 1 s time resolution in a perfused heart, albeit
providing less precision in measurements and only a global
determination.?’ Such an approach could allow us to measure
global A[HbO,] and global pO, simultaneously with a high
temporal resolution, understand the relationship between glo-
bal A[HbO,] and global pO,, and obtain absolute vatues of
sO, of the tumors as tumors grow.

In conclusion, we have refined the algorithms for calculat-
ing [Hb], [HbO,], and [Hb,,] and measured relative
[HbO,] changes in tumor vasculature and tumor tissue pO,
under carbogen intervention using NIRS and a needle type
pO; electrode. The pO, data were also supported by the °F
MR pO, mapping. We have also developed an algorithm to
estimate sO, values in the tumor during respiratory interven-
tions. The NIRS data showed significant changes in vascular
oxygenation accompanying respiratory interventions, and
changes in tumor vascular oxygenation preceded tumor tissue
pO,. Oxygen electrode measurements and '°F MR pO, map-
ping results proved that tumors are highly heterogeneous. The
phantom data confirmed that normalized [HbO,] data to-
gether with pO, measurements can be used to estimate abso-
lute sO, values in a homogeneous system. For a highty het-
erogeneous medium, such as tumors, local comparison
between the [HbO,] and pO, value is desired and required in
order to reveal the process of oxygen delivery from the tumor

Interplay of Tumor Vascular Oxygenation . . .

vascular bed to the tumor tissues. Therefore, this study not
only demonstrates that the NIRS technology can provide an
efficient, real-time, noninvasive approach to monitoring tumor
physiology and is complementary to other techniques, but
also emphasizes the need to develop an imaging technique to
study spatial heterogeneity of tumor vasculature under oxygen
or other therapeutic interventions.
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Appendix 2

Dynamic response of breast tumor oxygenation to
hyperoxic respiratory challenge monitored with
three oxygen-sensitive parameters

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason,

and Hanli Liu

The simultaneous measurement of three oxygen-sensitive parameters [arterial hemoglobin oxygen sat-
uration (Sa0Q,), tumor vascular-oxygenated hemoglobin concentration ({HbO,)), and tumor oxygen ten-
sion (p0O,)] in response to hyperoxic respiratory challenge is demonstrated in rat breast tumors. The
effects of two hyperoxic gases [oxygen and carbogen (5% CO, and 95% O,)] were compared, by use of two
groups of Fisher rats with subcutaneous 13762NF breast tumors implanted in pedicles on the foreback.
Two different gas-inhalation sequences were compared, i.e., air-carbogen—-air-oxygen—air and air—
oxygen-air—carbogen—air. The results demonstrate that both of the inhaled, hyperoxic gases signifi-
cantly improved the tumor oxygen status. All three parameters displayed similar dynamic response to
hyperoxic gas interventions, but with different response times: the fastest for arterial SaO,, followed by
biphasic changes in tumor vascular [HbO,), and then delayed responses for pO,. Both of the gases
induced similar changes in vascular oxygenation and regional tissue pO, in the rat tumors, and changes
in [HbO,} and mean pO, showed a linear correlation with large standard deviations, which presumably
results from global versus local measurements. Indeed, the pO, data revealed heterogeneous regional
response to hyperoxic interventions. Although preliminary near-infrared measurements had been dem-
onstrated previously in this model, the addition of the pO, optical fiber probes provides a link between
the noninvasive relative measurements of vascular phenomena based on endogenous reporter molecules,

with the quantitative, albeit, invasive pO, determinations. © 2003 Optical Society of America
OCIS codes: 170.1470, 170.3660, 170.4580, 120.3890, 120.1880, 230.2090.

1. Introduction

It is widely recognized that hypoxic regions in solid
tumors may limit the efficacy of nonsurgical therapy,
including radiotherapy, photodynamic therapy, and
chemotherapy.l-¢ Many adjuvant interventions
have been tested, including simple strategies such as
breathing hyperoxic gases.57 However, a meta-
analysis of some 10,000 patients showed only a mod-
est benefit, and this benefit was restricted to specific
tumor types.®2 It is thought that the failure of such
interventions was largely due to the inability to iden-
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tify those patients who would benefit. Indeed, there
is growing emphasis on tailoring therapy to the indi-
vidual characteristics of each patient’s tumor. Fur-
thermore, carbogen (5% CO, and 95% O,) and oxygen
have been used on experimental tumors in animals as
well ‘as on clinical trials in patients for many
years.%10 But the therapeutic benefits of the two
kinds of respiratory hyperoxic gases are diverse, de-
pending on the tumor types and individuals.1t-13
Accordingly, accurate assessment of tumor oxygen-
ation at various stages of tumor growth and in re-
sponse to interventions may provide a better
understanding of tumor development and may serve
as a prognostic indicator for treatment outcome, po-
tentially allowing therapy to be tailored to individual
characteristics.

Various techniques have been developed to mea-
sure oxygen tension (pO,) or vascular oxygenation of
tumors.’* Many methods are invasive, and those
requiring biopsy preclude dynamic investigations.
Optical techniques based on light absorption of en-
dogenous chromophores, e.g., near-infrared (NIR)




spectroscopy of oxygenated and deoxygenated hemo-
globin, are entirely noninvasive and allow real-time
monitoring of tumor vascular oxygenation.1%-17
However, NIR has limited spatial resolution, and it
remains to be determined whether vascular oxygen-
ation is related to therapeutic outcome. Hitherto,
quantitative pO, has been shown to have prognostic
value,18-21 but pO, represents a balance between ox-
ygen delivery and consumption. Thus, we seek to
explore the interplay of vascular and tissue oxygen-
ation. Electrodes have been used widely to study
tumor oxygen dynamics with respect to
interventions,22-24 but they are generally limited to a
single location and small probes can be fragile. We
have ourselves recently shown a correlation between
pO, and AHbO, in some tumors, but we noted dis-
tinct heterogeneity, and thus, the global NIR mea-
surements were not always related to local pO,.25
Multiple fiber-optic probes may be inserted into a
tumor,26-28 and we have now investigated correlation
between NIR measurements and multiple (three) si-
multaneous pO, measurements.

We now report simultaneous measurements of
three oxygen-related parameters, i.e., arterial hemo-
globin oxygen saturation, SaQ,; tumor oxygenated
hemoglobin concentration, [HbO,]; and tumor oxygen
tension, pO,, to assess dynamic responses of rat
breast tumors to hyperoxic gases. Changes in tumor
vascular [HbO,] were measured by NIR spectroscopy
(NIRS) using a photon-migration, frequency-domain
device; changes in regional pO, were monitored by a
fluorescence-quenched, oxygen-sensing, fiber-optic
system (FOXY); the arterial SaO, values were re-
corded with a fiber-based, pulse oximeter.

2. Matenrials and Methods

A. Near-Infrared Spectroscopy System for Measurement
of Changes in [HbO,]

NIR light (700 to 900 nm) has considerable tissue
penetration depth (several centimeters) and permits
in vivo sampling of large tissue volumes (e.g., human
breast, brain, skeletal muscle, or tumors), since pho-
ton transport in tissue is dominated by scattering
rather than by absorption. Absorption of NIR light
by the oxygenated and the deoxygenated hemoglobin
chromophores may be used to determine hemoglobin
oxygenation and blood concentration changes. As
described in detail previously,'625 a homodyne
frequency-domain system (NIM, Philadelphia, Penn-
sylvania) was used to monitor the global changes in
oxygenated and deoxygenated hemoglobin concentra-
tions, A[HbO,] and A[Hb], respectively, in rat breast
tumors in response to variations in inhaled gas.
Briefly, the light from two NIR laser diodes (758 nm
and 785 nm) was coupled into a bifurcated fiber bun-
dle and illuminated on the tumor, and the transmit-
ted light was collected and propagated to a
photomultiplier tube (Fig. 1). The fiber bundles
were placed on the surface of the tumors in a trans-
mittance mode parallel to the body of the rat. The
fiber tips touched firmly on the skin (without com-

FOXY System

Light Source

RF Source ¥
®=140 MHz

Tempcrature
Probe

Fig. 1. Experimental setup for simultaneous oximetry. The
3-mm-diameter fiber bundles of the NIRS system deliver and de-
tect the laser light through the tumor in transmittance geometry.
PMT represents a photomultiplier tube. I/Q is an in-phase and
quadrature phase demodulator for retrieving amplitude and phase
information. The FOXY system comprises three fiber-optic
oxygen-sensing probes that are inserted into different regions of
the tumor. The pulse oximeter probe is placed on the hind foot of
the rat.

pression) in the middle parts of the tumors, providing
optimal geometry to interrogate deep tumor tissue.

Based on modified Beer—Lambert’s law,2® changes
in oxygenated and deoxygenated hemoglobin concen-
trations, AlHbO,] and A[Hb], due to respiratory in-
tervention were derived from the measured
amplitudes at the two wavelengths and calculated
with the following equations?5:

A 758 A 785
~10.63 log(A—B) + 14.97 log A—B
T, T,

d b4

(1)
A 758 A 785
8.95log(A—B) —6.7310g(—B)
T,

A[HbO,] =

A[Hb] =

d 2

where Ap and Ay are the baseline and transient am-
plitudes measured from the NIR system, respective-
ly; d is the source—detector separation; the unit for
both A[HbO,] and A[Hb] is millimolar per differential
path-length factor (DPF); and the DPF is for tumor
tissues. As demonstrated in our previous study,
normalization of AlHbO,] and A[Hb] to their maximal
values can eliminate the effects of d and DPF on the
results.25

B. Fiber-Optic Oxygen-Sensing System for Measurement
of Changes in pO,

Regional pO, in tumors was monitored with a mul-
tichannel, fiber-optic, oxygen-sensing system (FOXY,
Ocean Optics, Inc.,, Dunedin, Florida).3® Three
fluorescence-quenched, optical fiber probes (AL300,
tip diameter 410 pm) were inserted into different
regions of the tumors (Fig. 1). Probes were posi-
tioned so that at least one was in a poorly oxygenated
region (low baseline p0O,) and at least one in a well-
oxygenated region (high baseline p0O,). Ifnecessary,
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the probes were gently moved through the tumor
until such diverse regions were located. In some
cases, the mean pO, derived from the three individ-
ual measurements is presented. Although this is a
commercial system, few details have been published
previously,?! and no applications to in vivo tumor
oximetry have been published to our knowledge.
Light from a pulsed blue LED (475 nm) was coupled
into one branch of a bifurcated optical fiber bundle
and propagated to the probe tip. The distal end of
the probe is coated with a thin layer of a hydrophobic
solgel material, where an oxygen-sensing ruthenium
complex is effectively trapped. Ilumination of the
ruthenium complex causes fluorescence at ~600 nm.
If the excited ruthenium complex encounters an ox-
ygen molecule, the excess energy is transferred to the
oxygen molecule in a nonradiative transition, de-
creasing or quenching the fludrescence signal. The
degree of quenching correlates with the oxygen con-
centration, and hence, pO,.

The fluorescence response of the ruthenium crystal
complex is highly temperature dependent, so to ac-
complish probe calibration it was necessary to stream
gases of known oxygen concentrations (100%, 20.9%,
10%, 2%, and 0%) through a cylindrical water jacket
heated to 37 °C. Calibration curves were automati-
cally calculated by means of the vendor-supplied soft-
ware, with the second-order, polynomial calibration:

2= 1+ K[0] + KfOP ®

where, I, is the fluorescence intensity at zero oxygen
concentration (nitrogen), I is the measured intensity
of fluorescence at a pressure of oxygen, [O] represents
the oxygen concentration (related to pOy), K; and K,
are the first- and the second-order coefficients and are
automatically supplied by the curvefitting routine
from the calibration measurements.

C. Pulse Oximeter for Measurement of Arterial S,0,

Arterial SaO, of the breast-tumor-bearing rats was
also monitored with a fiber-optic pulse oximeter
(Nonin Medical, Inc., Plymouth, Minnesota) placed
on the hind foot of the rats. The system consisted of
two optical fibers used for delivering and receiving
the light. The tips were placed on either side of the
foot in transmission mode.

D. Animal Model

Mammary adenocarcinomas 13762NF (originally ob-
tained from the Division of Cancer Therapeutics,
NIH, Bethesda, Maryland) were implanted in skin
pedicles32 on the foreback of adult female Fisher 344
rats (~150 g). Once the tumors reached 1-2 em di-
ameter, rats were anesthetized with 150-pl ketamine
hydrochloride (100 mg/ml, i.p.) and maintained un-
der general gaseous anesthesia with 1.3% isoflurane
in air (1 dm®/min). Body temperature was main-
tained at 37 °C by a warm water blanket. Tumors
were shaved to improve optical contact for transmit-
ting NIR light. The tumor diameters along the
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Fig.2. Time profile of the three oxygen-sensitive parameters, i.e.,
the normalized changes of tumor A[HbO,], the mean changes of
tumor ApQ,, and the arterial SaQ, with respect to carbogen
breathing in a representative 13762NF rat breast tumor (No. 1, 3.2
cm®).

three major orthogonal axes (a, b, ¢) were measured
with calipers and volume estimated with an ellipsoid
approximation with the formula: V = (w/6)(abc).
Two groups of rats (n = 7 in each group) were used
to compare the effects of carbogen and oxygen on
vascular oxygenation of breast tumors. Group 1 ex-
perienced the gas-inhalation sequence of air—
carbogen—air-oxygen—air. Group 2 was exposed to
the reverse sequence of air—oxygen--air-carbogen—
air. Each gas was maintained for 20 min. In addi-
tion, the FOXY pO, probes were applied to five rats
from Group 1, and the dynamics of the three oxygen-
related parameters were measured simultaneously.

3. Restults

A. Dynamic Responses of Three Oxygen-Related
Parameters to Carbogen Intervention

Typical time profiles of the normalized A[HbO,],
mean ApQO,, and SaQ, in response to carbogen inter-
vention are shown for a representative 13762NF
breast tumor (No. 1, 3.2 cm®) in Fig. 2. When the
inspired gas was switched from air to carbogen, the
Sa0, readings increased rapidly and significantly
from the baseline value of 85% to the maximum of
100% within 2.5 minutes (p < 0.0001). The normal-
ized A[HbO,] showed a sharp initial rise in the first
minute (p < 0.0001) followed by a slower, gradual,
but further significant increase over the next 19 min
(p < 0.001). Mean ApO, increased rapidly by ap-
proximately 50 Torr within 8 min (p < 0.0005) and
also continued a slower and gradual increase over the
next 12 min (p < 0.005). Return to breathing air
produced a significant decline for all three signals
(p < 0.0001).

Sa0, and pO, displayed a single-phase dynamic
behavior in response to carbogen intervention,
whereas A[HbO,] showed an apparent biphasic re-
sponse. These dynamics may be characterized by
time constants of a single-exponential response. For
the tumor in Fig. 3, Sa0, had the fastest response,
with a time constant of 7(Sa0,) = 1.1 * 0.2 min (R =
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Fig.3. Dynamic responses of the three oxygen-sensitive param-
eters to carbogen intervention in a rat breast tumor (No. 1, 3.2
cm®). Single-exponential curve fitting yielded SaO,
0.204{1 — exp[—(¢ — 20.02)/1.1]} + 0.85 (R = 0.93), A[HbO,] =
0.655{1 — exp[—(t — 20.36)/2.59]} + 0.125 (R = 0.89), and
ApO, = 42.68{1 — exp[—(t — 21.01)/4.56]}} + 16.66 (R = 0.98);
biexponential fitting resulted in A[HbO,] = 0.373{1 — exp[—(t —
20.36)/0.61]} + 0.648{1 — exp[—(t — 20.36)/21]} (R = 0.97).

0.93), followed by [HbO,] with 7(A[HbO,]) = 2.59 =
0.06 min (R = 0.89), whereas ApQ, yielded the slow-
est response T(ApO,) = 4.56 * 0.06 min (R = 0.98).
Time constants for Group 1 are listed in Table 1. In
every case 7(Sa0,) < (A[HbO,]) < 7(ApO,), based on
the single-exponential fitting. No apparent relation
between the time constant and the tumor volume was
observed.

It is clear that the response of AHbO, is not well
represented by a single exponential, and thus, a
double-exponential expression with two time con-
stants, 7, and 7, was also used (Fig. 3). Comparison
between the biexponential fitting for A{HbO,] and the
single-exponential results for both SaO, and ApO, in
the first five rat tumors (Table 1) shows that the time
constants of SaO, (~1.2 > 0.4 min) are similar to
those of the first phase of A[HbO,] (~0.5 * 0.2 min),
whereas the second phase is longer and highly vari-

able (~14 * 11 min). No significant correlations
were found between any of the time constants in
Table 1.

Time delay, ¢;, between the time when the gas
intervention was initiated and the time when the
changes in signals were detected, reveals another
difference among the three oxygen-sensitive param-
eters. For tumor 1 (Fig. 2), the Sa0, signal was the
first to respond to the intervention. Change in
A[HbO,] was observed 30 s later with ¢; = 30 s,
followed by changes in ApO, another 30 s later (t; =
60 s). Similarly, when the gas was returned from
carbogen to air, the SaO, signal decreased immedi-
ately, followed by declines in A[HbO,} and in ApO,
with ¢; of 30 and 120 s later, respectively. As ex-
pected, changes in SaO, always preceded AHbO,, and
ApO, occurred last for all tumors.

B. Comparison of the Effects of Carbogen and Oxygen
Intervention on Tumor Oxygenation

Switching from air breathing to carbogen or oxygen
produced similar changes in AHbO, [Fig. 4(a)l
However, the time course was substantially different,
requiring a biphasic exponential fit for carbogen, but
a single exponential for oxygen [Fig. 4(b)]. For the
seven tumors in Group 1, there was no significant
difference (p > 0.3) in the maximum magnitude of
A[HbO,] caused by carbogen or oxygen interventions
[Fig. 4(c)].

To examine the possible effect of preconditioning
required that Group 2 experience a reversed gas in-
tervention, with exposure to oxygen prior to carbogen
[Fig. 5(a)]. In this case, the time constants of the
normalized tumor vascular A[HbO,] were now simi-
lar for both gas challenges: indeed, for six of seven
tumors, carbogen no longer induced the biphasic be-
havior. Figure b5(b) shows that changes in
(AHbO,),, ., were similar to those in Group 1, and
again, the two gases did not produce significantly
different response in (AHbOy)pmay. This is empha-
sized for both Groups 1 and 2 by a strong linear
correlation (slope = 1.16) between the A[HbO,},,.»
values observed in response to each of the two con-

Table 1. Time Constants of Sa0,, A[HbO,], and ApO, Response to Carbogen and Oxygen Intervention in the Breast Tumors®
Single-Exponential Fitting of Sa0,, A{HbO,] and ApO, . . .
(Carbogen Intervention) Double-Exponential Fitting for Single-Exponential
A[HbO,] (Carbogen Fitting of A[HbO,]
Breast Tumors Sa0, A[HbO,] ApQO, Intervention) (O, Intervention)
Volume (cm?) T (min) R T (min) R 7 (min) R 71 (min) 72 (min) R 7 (min) R
No. 1 (3.2) 1.1+02 0.93 2.59 = 0.06 0.89 456 +0.04 098 0.61*0.03 21+3 097 0.35+0.01 092
No. 2 (3.0) 1.6+02 098 3.40 + 0.07 091 46==0.1 0.82 0.62 £0.06 11+1 096 051+001 0091
No. 3 (4.6) 12*x02 097 2.12 = 0.06 0.76 226+0.02 098 06=0.1 37+3 096 152002 0.89
No. 4 (2.6) 1.9*x03 0.98 2.68 = 0.05 0.93 3.5 0.1 0.86 0.12 £ 0.02 52+0.1 098 171=*0.03 094
No. 5 (5.6) 08+02 091 2.68 + 0.05 074 451*x002 099 0.17+003 125+0.6 099 549+ 0.03 098
No. 6 (1.9) 09=02 081 1.62 + 0.01 0.95 nd / 063*0.08 23=+0.1 096 516=*0.06 093
No. 7 (0.72) 1.0+05 095 © 3.60*0.03 0.93 nd / 061+0.02 105+03 0.98 354*0.03 095
Mean 12+04 2.7+0.6 4+1 0.5*02 14 =11 25 +2

“Under the inhalation sequence of air—carbogen—air—oxygen-—air.
®nd, not determined.
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Fig. 4. (a) Time course of changes in tumor vascular A[HbO,] for
a representative 13762NF breast tumor from Group 1 (No. 2, 3.0
cm®) with respect to altering inhaled gas.  (b) Respective curve fits
for the carbogen and oxygen interventions. (c) Average maximum
values of normalized ATHbO,] for the seven breast tumors in Group
1.

secutive interventions [Fig. 5(c)]. In this case, non-
normalized data are shown for specific comparison of
the absolute A[HbO,],,,.x produced by oxygen and car-
bogen for each of the tumors.

C. Tumor pO,

The FOXY pO, probes generally indicated distinct
heterogeneity in pO,. Moreover, response to the hy-
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Fig. 5. (a) Dynamic changes in tumor vascular A[HbO,] for a
representative 13762NF breast tumor from Group 2 (No. 9, 2.6
cm®) with gas-inhalation sequence reversed compared with Group
1. (b) Average maximum values of normalized A[HbO,] for Group
2. Gas-inhalation sequence reversed compared with Group 1.
(c) Correlation between maximum A[HbO,] achieved with carbo-
gen inhalation versus that with oxygen (R = 0.97): @, carbogen
first; A, oxygen first.

peroxic gas was diverse: those probes that indicated
apparently well-oxygenated regions usually showed a
large and rapid response, whereas those with lower
baseline pO, often showed little change [Fig. 6(a)].
The pO, responses to the two interventions showed a
highly consistent behavior at each individual location
[Fig. 6(b)]. There was also a distinct correlation be-
tween the global NIR measurements and the mean
ApO, (Fig. 7). Because of heterogeneity in regional
pO,, the standard deviations of the mean pO, values
were large.
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4. Discussion

In this study, we have simultaneously measured the
arterial SaO,, the global changes in the A[HbO,] of
tumor vasculature, and the regional changes in the
ApO, of tumor tissue, in response to hyperoxic (i.e.,
carbogen and oxygen) gas interventions with a pulse
oximeter, an NIRS system and a multichannel, fiber-
optic, oxygen-sensing system, respectively. All
three oxygen-sensitive indicators displayed similar
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Fig. 7. Correlation between mean ApO, and A[HbO,] for the five
breast tumors (R > 0.86): @, transition from air to carbogen; A,
transition from air to oxygen.

dynamic tendency in response to carbogen interven-
tion (Fig. 2).

The simultaneous measurements demonstrate the
compatibility of the NIRS system with the FOXY
fiber-optic oxygen-sensing system, without interfer-
ence. Both systems are relatively inexpensive and
provide real-time measurements, but the multichan-
nel FOXY fiber-optic system monitors ApO, in spe-
cific locations, whereas the NIRS system provides
global measurements. Whether AHbO, determined
with this methodology will be a clinically useful pre-
dictor for tumor response to oxygen-dependent inter-
ventions and therapies remains to be determined.
However, it is established that measurements of pO,
have prognostic value in the clinic820 so that corre-
lations between pO, and NIR measurements would
be very important.

We have previously applied a polarographic oxygen
electrode simultaneously with NIR.22 However,
that study provided only a single local pO, value, and
in some cases correlations with global NIR measure-
ments were very poor. The optical fiber system used
here allows multiple locations to be interrogated si-
multaneously. The device can be expanded to many
channels, but our system uses four channels. Un-
fortunately, probes are fragile, and the oxygen-
sensitive coating on the tips is readily damaged.
Thus, we only had three probes available for this
study. Indeed, fiber-optic probe fragility is a well-
recognized problem, and our previous experience
with the more expensive OxyLite system was also
restricted to three channels owing to probe damage.?6

The FOXY system (~$13k) is much less expensive
than the OxyLite (~$48k), and its mode of action is
also simpler, detecting fluorescent signal intensity
rather than fluorescence lifetime. It seems capable
of measuring pO, across the whole range of atmo-
spheric oxygen tensions (0—760 Torr), whereas the
OxyLite is restricted and becomes very insensitive
above approximately 100 Torr. However, our expe-
rience shows that although the FOXY system pro-
vides precise measurements of ApQO,, absolute values
of pO, may not be reliable. We continue to perform
validation experiments. By contrast, the OxyLite

- system seems to give very accurate pO, values.

Our experience shows that the FOXY probes are
much easier to use than electrodes, particularly, in
terms of calibration and stability. Since the probes
are fragile, we insert them into tumors through a fine
needle (25 gauge), which readily punctures the sur-
rounding skin and penetrates tough fibrous tissues.
The needle is then backed up from the tip to facilitate
measurements. The probes often require a few min-
utes to settle at a stable baseline value, but then show
good baseline stability and rapid response to inter-
ventions [Figs. 2 and 6(a)]. They are easily moved
within the tumor to locate regions, presenting a par-
ticular pOy of interest, e.g. hypoxic or well oxygen-
ated. In the search for appropriate locations, probes
are moved forward to interrogate fresh tissues rather
than in reverse, since blood may pool in the tracks
owing to vascular damage. However, we observe
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minimal bleeding on removal of the probes from the
tumors.

We have found no interference between the NIR
and FOXY instruments, although any tumor motion
associated with moving the fiber probes can alter the
optical contact of the NIR optrodes, and thus, alter
apparent AHbO,. Thus, baseline AHbO, is deter-
mined once the fiber probes are situated. New fiber-
optic probes of the FOXY system have a thick coating
of fluorescent gel and a black covering, but this wears
with use and gradually allows reception of the NIR
light. Since the LEDs of the two systems operate at
very different wavelengths, viz. 475 versus 760 nm,
there is no interference for detection. The detection
of local NIR light by the FOXY probe opens the ex-
citing possibility of detecting regional hemoglobin ox-
ygen saturation. We believe the FOXY optical
probes could be moved within the tumor to map the
distribution and path of the transmitted NIR light,
helping to explore and validate the optical character-
istics of the tumor. This can simultaneously provide
a correlation between local AHbO, and ApO,.

In this study, we have examined a much larger
group of rats than previously.’625 We have now
shown rigorously that the two hyperoxic gases induce
similar changes in vascular oxygenation (NIR) and
regional tissue pO, (FOXY) in this type of rat breast
tumor. These data are consistent with our previous
observations using !°F NMR imaging (FREDOM)?32 in
this tumor type and also in rat prostate tumors.34.35
If the two gases are indeed equivalent in terms of
manipulation of tumor oxygenation, it could have
great therapeutic benefit since the popular carbogen,
which is in use in clinical trials,3® can cause respira-
tory discomfort.

The current data show that AHbO, and ApO, are
correlated (Fig. 7), and thus, such noninvasive obser-
vations could have value in the clinic. The major
deficiency in our current NIR approach is lack of
spatial discrimination, and thus efforts to implement
NIR imaging will be of great value. It will also be
interesting to correlate other measurements, such as
blood-oxygen-level-dependent (BOLD) proton mag-
netic resonance imaging, which provide high spatial
resolution, but which are sensitive to vascular flow
and volume as well as oxygenation.3”

The biphasic response of AHbO, to carbogen is in-
triguing, and we believe it represents the distinct
vascular compartments of arterioles (high flow) and
capillaries. However, the change to monophasic be-
havior, when carbogen is administered second, re-
quires further exploration; in the future, we propose
to test various concentrations of oxygen and carbon
dioxide and air to separate the components of the
response. The carbogen dioxide component of car-
bogen is known to be vasoactive; however, the specific
effects may depend on tumor type, site of growth, and
other factors.9.38 '

In terms of vascular oxygen delivery, the data in
Table 1 reveal the progressive movement of oxygen:
ty (Sa0y) < tq (A[HbO,]) < ty (ApO,). As expected,
switching to hyperoxic gas caused the systemic arte-

2966 APPLIED OPTICS / Vol. 42, No. 16 / 1 June 2003

rial 8a0, to increase, as a result of the immediate
combination of deoxyhemoglobin with oxygen. The
highly oxygenated blood circulated in the systemic
vasculature of the rats (including the capillary bed of
the tumor tissue), resulting in a delayed increase in
[HbO,] in the tumor vasculature, and led to an un-
loading of oxygen to the tumor tissue. For the biex-
ponential model of ATHbO,], the fast component has
a similar time constant to the Sa0, measured with
the pulse oximeter on the hind leg, strongly suggest-
ing that it represents arteriolar oxygenation in the
tumor. In this study, tumor volumes do not show
any direct relation with time constants or changes of
amplitude in response to hyperoxic gas interventions.

It is increasingly evident that oxygen and hypoxia
play important roles in tumor development and re-
sponse to therapy.l® NIR offers an attractive non-
invasive means of investigating tumor oxygenation,
particularly in terms of dynamic response to inter-
ventions, but we had previously shown a potential
mismatch between global AHbO, and local ApO,.25
The data presented here indicate a correlation be-
tween the global NIR measurements and mean pO,
values with even as few as three representative loca-
tions per tumor. This does suggest that it will be
important to develop regional NIR measurements
and that even relatively crude mapping could reveal
heterogeneity. In the meantime, we believe these
studies provide further evidence for the value of
NIRS to explore tumor physiology.
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Zhao for their assistance with data processing. We
gratefully acknowledge Weina Cui for helpful discus-
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Appendix 4
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ABSTRACT

The goal of this study was to investigate the effect of photothermal laser irradiation on rat
breast tumor (DMBA-4) vascular contents. An 805-nm diode laser was used in our experiment
with a power density ranging from 0.32 to 1.27 W/cm®. The dynamic changes of oxygenated
hemoglobin and total hemoglobin concentrations, AJHbO,] and A[Hbt, in rat tumors during
photothermal irradiation were non-invasively monitored by a near infrared spectroscopy system
(NIRS). A multi-channel thermal detection system was also used simultaneously to record
temperatures at different locations within the tumors. Our experimental results showed that: 1)
Photo irradiation did have the ability to induce hyperthermic effect inside the rat breast tumors in
a single exponential trend; 2) The significant changes (p<0.005) of A[HbO;] and A[Hb]ota in
response to a low dosage of laser irradiation ( 0.32 W/cm®) have a single exponential increasing
trend, similar to that seen in the tumor interior temperature. This increase in vascular content
may be attributed to vessel dilation under both thermal and photo effect. 3) The increase in
magnitude of A[HbO,] is nearly 2 times greater than that of A[Hb]a1, suggesting that photo
irradiation may enhance tumor vascular oxygenation. The last observation may be important to
reveal the hidden méchanism of photo irradiation on tumors, leading to improvement of tumor

treatment efficiency.




INTRODUCTION

Laser phototherapy, a non-surgical modality for cancer treatment, is gaining widespread
acceptance because of precise energy delivery into the tumor tissue (1-3). The laser energy
delivered to the targeted tumors can induce localized photomechanical, photochemical and
photothermal reactions, thus killing tumor pells. In general, photochemical reactions may cause
the change of chemical bonds and form toxic radicals, such as release of singlet oxygen, leading
to the death of organized tissues. Photomechanical reactions may induce tissue stress, resulting
in tissue cells broken up and ejection. Photothermal reactions may induce hyperthermia and
coagulation, causing cell destruction (4). In particular, thermal cytotoxicity effects are found to
be more profound under acidotic (low pH) conditions, which are often present in poorly
~ oxygenated tissues (5-7), such as in tumors. Many research studies have reported the existence of
acute/chronic hypoxic regions within the majority of solid tumors (8-10). As a result, |
cytotoxicity induced by selective photothermal irradiation can be more effective in tumor tissue
than normal tissue. To further enhance the desirable photothermal effects, photosensitizers are
often used in the targeted tumor tissue along with laser irradiation to cause selective and
localized photon-tissue interactions (11-12). In addition, administration of an immunoadjuvant
has been proved to increase systemic cancer cure and long-term resistance to cancer of the same
origin, when combined with the selective thermal treatment (13-14). Chen et al have developed a
laser immunotherapy by combining laser irradiation, a laser-absorbing dye and an
immunoadjuvant to improve cancer therapy efficiency (15-18). The previous experimental
results have demonstrated that this unique approach has positive effects on both primary and

metastatic tumors.




However, the hemodynamic and physiological properties inside the tumors during
photothermal therapy are poorly understood, although the underlying mechanism of the laser
irradiation has been intensively studied (19-22). Measuring the reduction of tumor size and |
survival rates is the current practice to evaluate the therapeutic outcome of therapy. Obviously,
non-invasive, real time monitoring of tumor hemodynamic characteristics before, during, and
after therapy is highly desirable. Such a technique may help reveal the tumor physiology and
therapeutic process caused by the therapy, providing treatment prognoses and guidance to
optimize the light dosimetry so as to improve the therapeutic outcome. Near infrared
spectroscopy (NIRS) has been demonstrated in our recent studies to be such a non-invasive
means in monitoring tumor vascular oxygenation during therapeutic interventions (23-25).

In this study, we investigated the effects of photothermal therapy on tumor vascular
contents and tumor temperature. An 805-nm diode laser was used for photothermal irradiation
of mammary tumors in rats. The dynamic changes caused by the laser irradiation in oxygenated,
deoxygenated and total hemoglobin concentrations, A[HbO,], A[Hb], and A[Hb]al, in the tumor
vasculature were monitored by an NIRS system. A multi-channel, thermal monitor was also used
simultaneously to record the temperatures at three different locations inside the breast tumors.
The correlations between the optical irradiation dosages, tumor temperatures, and tumor vascular
contents were studied. The dynamic features of tumor temperature and vascular oxygenation

were quantified to reveal the dynamic effects within the tumors under the laser irradiation.

MATERIALS AND METHODS .

Near infrared spectroscopy The changes of oxygenated, deoxygenated, and total

hemoglobin concentrations, A[HbO,], A[Hb], and A[Hb]eta, in tumor tissue caused by laser




irradiation were determined by a near-infrared, homodyne, frequency-domain, spectroscopy
system (NIM, Philadelphia, PA), which has been described in detail elsewhere(23-25). Briefly,
the amplitude-modulated light at 140 MHz at wavelengths of 758 nm and 785 nm illuminated the
tumor surface through a light-delivery fiber bundle with output powers of 9 mW and 11 mW at
785 nm and 758 nm wavelengths, respectively, measured at the tip of the bundle by an optical
power meter. The experimental setup is shown in Figure 1. The 805-nm laser light was vertically
applied on the tumor surface. The delivering and detecting fiber bundles of the NIRS system
were placed horizontally and in good contact with the surface of the tumors in a transmittance
mode, without compressing the tumors. The diffused light through the tumor tissue was collected
and filtered by a sharp low-pass optical filter, which cut off the optical signal above 805 nm from
the laser irradiation, and then propagated into a photo multiplier tube (PMT) through the
detecting fiber bundle. The signal detected by the PMT was dequulated through an In-phase

and Quadrature-phase (I&Q) circuit, and the amplitude and phase of the signal were recorded.

Algorithms for calculations of ATHbO,], A[Hb], and A[Hb ], Historically, biological
chemists and biochemists have utilized Beer-Lambert’s law and deVeloped the notation of

optical density to express light absorption as a function of hemoglobin concentration (26-30),

Optical Density (OD)= Log(Ay/A) =¢cl | 1

where A and 4 are light intensities of the incident and transmitted light, respectively, &is the
extinction coefficient of hemoglobin, c is the concentration of hemoglobin, and / is the length of
light path through the measured sample. When the measured sample has a mixture of

oxygenated and deoxygenated hemoglobin, Equation (1) can be further evolved to (28-30),

OD(2) = {em(A) [Hb] + empor(A) [HPO;]} | 2)




where OD(4) is the optical density at wavelength A, gup(4) and gmpo2(4) are the extinction
coefficients at wavelength A for molar cdncentrations of deoxygenated hemoglobin, [Hb], and
oxygenated hemoglobin, f/HbO,], respectively, assuming ferrihemoglobin is minimal. By
employing two wavelengths, both /HbO,] and [Hb] can be determined by measuring the OD
values at the two specific wavelengths, provided that the values for gy3(4) and ggpoa(4) are

known:

egp (A2 )OD( A1) — e (41 JOD( 1) 3)

HbO = H
{6021 Hewms(A2)emo2( 1)~ e (A4 )em02(A2)}

enpo2(A2)0D(A4) = €ppo2(41)OD)(A2) @)

[Hb] = .
ey (A )empoa(A2)— em( A2 Jerpoa( 1))

It follows that changes in [Hb] and [HbO;] can be consequently given as:

ATHBO — Ep (/12 )AOD(’LI ) —EHp (/11 )AOD(ZZ) , 5
[H602] Hewn (A2 )empo2( 1) - €mp( 41 )e o2 (A2 )] )
£mp02( A2 )A0D( 24 ) = €gpoa (44 )AOD( A5 ) 6)

ATHb] = ’
(1] Hews (A4 )emo02( A2 )~ emp( A2 Jegpoa( A2 )]

where AOD(A) represents a change in optical density at the specific wavelength, 4, and equals to
log(Ap/A7). Apand Ar correspond to light intensities measured under the baseline and transient
conditions.

Note that in principle, / represents the optical path length between the source and
detector. While / is simply the physical separation, d, between the source and detector through a
noﬁ-scéttering medium, exact quantification of / for an intact tissue or organ is complex because
of light scattering in tissue. Since / is in proportion to the separation, d, we can associate / to d as
I=DPF*d, where DPF is a differential path length factor to account for light scattering. It has |
been well accepted that together with DPF, Equation (2) can be treated as modified Beer-

Lambert’s law; and consequently, Equations (5) and (6) can be correctly used to quantify




changes in [Hb] and [HbO;] in highly scattering media (31-32), such as in intact tissue or
organs.

To be consistent with our previous work, we adopt in this paper the € values published by
Zijlstra et al (33). We had to interpolate the € values at the two wavelengths employed in our
study, followed by certain corrections due to the interpolation errors by phantom calibration
measurements (24). Specifically, we included two factors, B; and B3, for the calibrated

algorithm, as given below:

mp(785nm) OD(758 nm) - & 1y, (758 nm )x OD(785nm)

_ B
A[HbO2 ] = I|e 1 (785 nm )& gy 2 (758 nm) — & gy, (758 nm )& g2 (785nm)|” ™

£m02(7851M) . 13758 nm,) 11502 (758 nm ) x OD(785 nm)

_ B2
A[Hb] = I o1y (785nm )e 102 (758 nm ) — & 41y, (758 nm )€ 02 (785 nm)] ° ®

where €up(758 nm) = 1.418, eypo2(758 nm) = 0.6372, epp(785 nm) = 1.111, and €xp02(785 nm) =
0.766, all in mMcm™. Note that a factor of 4 has been multiplied for each of the €’s at the
respective wavelengths to account for light absorption from 4 hemes per hemoglobin molecule
(34) since the extinction coefficients published in the field of biochemistry were expressed on a
heme basis (26-30). Furthermore, we have used ;=1.103 and [3,=0.9035 according to our
phantom study (24). After substituting all of the parameters into Equations (7) and (8), we have

arrived at the final equations to quantify changes in hemoglobin concentration:

A[HbO,] = —2.658-0D(758nm) ;— 3.743-0D(785nm) ’ 9)
'A[Hb] _ 2.238'0D(758nm);1.683-0D(785nm)' (10)

A[Hb]i.tal can also be obtained by adding Equations (9) and (10),




~042-0D(758mm) +206-0D(785mm) (1,

A[Hb] 111 = A[HbO;] + A[Hb] = .

Notice that the units for Af/HbO,], A[Hb], and A[Hb ], are mM; however, the values obtained
from Equations (9) to (11) are scaled by a factor of DPF. Since.DPF is so far an unknown
parameter for tumors, we include it within the unit as mM/DPF.

Laser photothermal irradiation system The system used for the photothermal therapy
consisted of an NIR diode laser, DIOMED 25 (DIOMEDICS, The Woodlands, TX), with an
emitting peak wavelength at 805 nm and a maximum power output of 25 W. The laser light was
coupled into an optical fiber, fitted with a microlens at the tip (Pioneer Optics, Windsor Locks,
CT) to ensure a uniform beam density, and delivered onto the tumor surface. The laser beam
diameter projected on the tumor surface was set as 2 cm in all the measurements by using the
visible aiming light in the laser system. After the beam diameter was adjusted, the aiming light
was turned off during NIR measurements.

Multi-channel thermal monitor A multi-channel thermal monitor (Omega, Stamford, CT),
incorporating an OM-700 Omega Engineering Data Acquisition and Control Unit, was used
simultaneously with the NIRS observation to monitor the internal temperatures at several
locations within the tumors. Specifically, three thermal probes were inserted at the top
(immediately below the overlaying skin), middle and bottom positions of the tumors, and one
probe was located outside the tumor for room temperature recording. The data of each probe
were recorded continuously, and the middle thermal probe recorded the internal tumor
temperature near the center of the optical field of NIRS.

Animal model The transplantable, metastatic mammary tumor cells (DMBA-4)(35-37) were
implanted in one of the inguinal fat pads of female Wistar Furth rats (Harlan Sprague Dawley

Co. Indianapolis, IN). Once the tumors reached 0.5 to 0.8 cm in diameter, the rats were




anesthetized for the experiments. Hairs around tumors were removed for better probe contact in
the NIRS measurement and for more efficient tumor exposure to the laser irradiation. The tumor
diameters along the three major orthogonal axes (a,b,c) were measured to determine the volume
of the tumors by using an ellipsoid approximation with the formula of V=(n/6)abc.
In this study, sixteen rat breast tumors were used in two different treatment protocols.
Ten of the 16 rat tumors were first exposed to a single laser irradiation with a laser power of 0.32
W/cm? (1 W laser power in a 2-cm diameter beam) for 10 minutes. Three or four days later, 4 of
the treated tumors, along with other six untreated tumors, were exposed to repeated laser
irradiations with a power density of 0.32, 0.64, 0.96 and 1.28 W/em? (1W,2W,3 W, and4 W
in 2 cm diameter beam), for 10 minutes with a recovery period of 10 minutes between two
adjacent irradiations. Tumor temperatures, tumor vascular A[HbO;], and A[Hb]otat Were

measured simultaneously in all the experiments.

RESULTS

Dynamic responses of A[HbO;], A[Hb]ta and temperature to photothermal treatment

Using the experimental setup shown in Figure 1 and Equations (9) and (11), tﬁmor vascular
A[HbO,], A[Hb]ita and internal temperatures were quantified simultaneously. Figure 2 shows
the temporal profiles of A[HbO,], A[Hb]itat and the internal temperatures of a rat tumor under
photothermal irradiation with a laser power density of 0.32 W/cm®. The experimental data
consisted of 4 temporal periods, as labeled in the figure. In period 1, without irradiation, the
thermal probes recorded the baseline temperatures at three different locations inside the tumor
for about 6 minutes. In period 2, the NIRS system was turned on while the thérmal recording

continued, and the recorded thermal readings showed no obvious perturbation from the NIRS.
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Afier the NIRS signals were stabilized, a 10-minute laser irradiation started. During the laser
treatment, the tumor temperatures, A{fHbO:], and A[Hb}ta showed signiﬁcant elevation (period
3 in Figure 2). Tumor temperatures increased significantly (p<0.0001) with the irradiation. The
tumor volumes near the tumor surface had more significant thermal effects: the temperature at
the top (T-top) varied from 25.3 + 0.1 °C t0 30.3 £ 0.1 °C (mean + standard deviation), while the
temperatures at the middle and bottom (T-middle and T-bottom) of the tumor were elevated from
26.1 £ 0.1 t0 29.8 + 0.1 °C and from 27.5 % 0.1 °C to 28.9+ 0.1 °C, respectively. The maximal
changes in T-top, T-middle and T-bottom caused by the laser irradiation were 5.0 + 0.1°C, 3.7 +
0.1°C and 1.4 + 0.1°C, respectively. Similarly, both AJHbO,] and A[Hb}oa displayed significant
increasing over the entire irradiation period (p<0.005), with the elevations of 0.37 + 0.01
mM/DPF and 0.20 + 0.01 mM/DPF, rcspectively. When the laser beam was turned off in period
4, A[HbO,], A[Hb}iotar and temperatures all decreased: with the temperatures reaching quickly the
baselines, while A[HbO,], A[Hb]ita declining more gradually and not quite reaching the
baselines within the 10-minute recovery period. |

In order to quantify the dynamic behaviors observed in Figure 2(a), single-exponential
fittings were applied to T-top, T-middle, A[HbO,], and A[Hb]ota1, o1 both rising and falling
periods, as shown in Figures 2(b) and 2(c). The time constants ob‘;ained from such fittings reveal
the dynamic responses of signals to the initiation and termination of photothermal irradiation.
As shown in Figure 2(b), T-top (time constant of 4.5 + 0.5 min) has a faster response to laser
irradiation than T-middle (time constant as 14.4 + 0.6 min). The time constants for A[HbO;] and
A[Hb]iota are 3.85 £ 0.03 min and 3.95 + 0.06 min, respectively. In response to the termination
of laser irradiation, T-top and T-middle have a time constant of 3.9 £ 0.5 min and 12.3 % 0.6 min,

respectively (Figure 2(c)). Itis clearly seen that the dynafnic thermal responses of the tumor to
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laser irradiation and to the termination of laser irradiation are well matched both at the tumor
surface and within the tumor. However, the time constants for A[HbO;] and A[Hblota to return
to the baseline are much longer in the falling period, with 18.5 £ 0.5 min and 24.3 £ 0.8 min,
respectively, also shown in Figure 2(c).

Similar protocols and measurements were performed on the other 9 tumors. Figure 3
shows the average increases of the temperature at different locations. Temperatures near the
tumor surface have maximal increases, while local temperatures near the bottom of the tumors
have minimal increases observed from all the ten tumors. The average elevations for T-top and
T-bottom are 7 + 3 °C and 3 2 °C, respectively. The thermal readings from the middle position
(T-middle) represent the average temperatures in the tumor volumes probed by the NIRS beam:s,
and the average increase in T-middle for the 10 rats is 5 + 2 °C. The statistical analysis indicates
significant differences between T-top, "f-middle, and T-bottom (p<0.05).

To investigate dynamic behaviors of the tumors in response to the initiation and termination
of laser irradiation, the time constants of T-top, T-middle, A[HbO;], and A[Hb];.ta obtained from
the rising and falling periods are summarized in Table 1. The results demonstrate several points:
1) An average dynamic change in T-top is significantly (p<0.05) faster than that in T-middle in
the rising period, with a time constant of 3.7 + 1.1 min for T-top and 6.4 * 3.2 min for T-middle.
A similar significant difference (p<0.01) also holds in the falling period with a time constant of
3.8 + 1.2 min for T-top and 6.6 £ 2.7 min for T-middle, respectively. 2) The dynamic responses
of A[HbO,], A[Hb]ota1, and T-middle have no significant differences during the initiation of
photo irradiation (p > 0.4). 3) The average time constant of T-top in the rising period is similar
(p >0.9) with that in the falling period, and so does that of T-middle (p > 0.7). However, 4) the

dynamic response of A[HbO;] in the falling period (a time constant of 28 + 22 min) is
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significantly slower (p<0.01) than that in the rising period (a time constant of 5.3 + 2.8 min), and
so does A[Hb]ta response with a time constant of 6.2 + 3.7 min and 41 + 32 min for the rising

and falling periods, respectively (p < 0.01).

Furthermore, while A{lHbO,] and A[Hb].tal have similar dynamic trends in response to
photo irradiation, the difference between their magnitudes exists. A strong correlation (R?= 0.95)
between A[HbO,] and A[Hb]ta has been observed, as shown in Figure 4, where the amplitude in
A[HbO,] is neaﬂy twice of that of A[Hb]ta for all of the 10 tumors (with a slop of the fitted

curve being 0.54).
Effect of the optical power density on tumor A[HbO;], A[Hb]ota and temperatures

Repeated laser irradiation was applied to the 10 tumors, 4 of which were used in the
previous single-irradiation treatment. Figure 5(a) shows the profiles of the tumor vascular
A[HbO,], A[Hb)ta and tumor temperatures in response to irradiations under power densities of
0.32, 0.64, 0.96 and 1.27 W/cm?, with an irradiation period of 10 minutes and a 10-minute
recovery period between each treatment. Tumor temperatures (T-top, T-middle and T-bottom)
increased significantly (p<0.0001) from the baseline to different maximum values according to
the different laser powers. The maximal changes in temperature in the middle of the tumor (T-
middle) due to consecutive irradiation displayed a strong linear dependence on the laser power
density, as shown in Figure 5(b). However, A[HbO,] and A[Hb]it showed interesting behaviors
in response to the thermal irradiations of different light dosages. Under relatively low laser
power irradiations (0.32, 0.64, 0.96 W/cmz), both A[HbO,] and A[Hb]ita increased significantly
(p<0.0001) with respect to the baselines, and they both declined significantly under a high laser

power irradiation (1.27 W/cm?), as shown in Figure 5(b). Similar to the feature observed in
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single irradiation, A{lHbO,] values had greater magnitude than A[Hb]ota, while their dynamic
trends were consistent. |

Temperature data for all of the 10 tumors under different power irradiations are plotted in
Figure 6. The maximum changes in T-middle increase linearly with the optical radiation dosages,

with a correlation of R%>0.91 for all the cases and having an average slop of 4 + 1.

DISCUSSION

In this study, we have investigated vascular A[HbO,], A[Hb}otat and internal temperature
simultaneously in rat breast tumors using an NIRS system and a thermal monitor, respectively, in
response to photothermal therapy. The results obtained in this study clearly demonstrate the
compatibility of the NIRS system with the temperature monitoring system, without notice;able
interference between the two systems (Figure 2). The NIRS system offers a real-time |
measurement of A[HbO,] and A[Hb]ta in tumor vasculature within the optical field of the NIR
probes, while the multi-channel thermal monitor records the températures at specific locations
within the tumors in real time. The compatibility of the t§vo systems permits simultaneous
determinations of thermal and vascular characteristics of treated tumors under photothermal
therapy, providing valuable insight into the dynamic relationship between the tumor vascular
contents and the thermal effect in treated tumor tissues.

As known, the hyperthermic treatment of tumors has been well established (38-40), and the
cellular cytotoxicity caused by hyperthermic treatment has been proven to destruct the tumor
cells. Laser irradiation applied in this study demonstrates its ability to induce hyperthermic effect
inside the rat breast tumors. The single exponential increase in tumor temperature obtained in our

results indicates that an extended exposure period to the laser beam may gradually stabilize the
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tumor temperature at a certain level, depending on both the laser power density and the
individual tumors (as seen in Figures 2(a) and 5(a)). Manipulation of the laser power may help
adjust the internal tumor temperature, resulting in optimal hyperthermic tissue destruction. While
a strong linear relationship between the maximum temperature increase within the tumors and
the irradiation power density has been observed for all the tumors, the actual dependence of
tumor temperature on the laser power density does vary from tumor to tumor (Figure 6). Such
inter-tumor variability demonstrates the necessity of real time monitoring for tumor temperature
under photothermal therapy. Moreover, the tumor temperatures near the surface (T-top)
response to the photo irradiation more rapid and more significant than those within deeper tumor
tissues (T-middle) (as seen in Figures 2, 3, 5(a), and Table 1). Such large thermal effect can
cause tissue burning at the tumor surface. To avoid such thermal damage, intratumoral injection
of a photosensitizer has been used by Chen et al to selectively manipulate the temperature within

the tumor without severe damage at the tumor surface (15-17,41).

It is seen clearly in this study that tumor vascular contents, i.e., oxygenated and
deoxygenated hemoglobin, are greatly affected by photothérmal therapy. When the photothermal
irradiation with a low power density (0.32 W/cm?) was applied to the breast tumors, both
A[HbO,] and A[Hb}ictal increased significantly (p<0.005) in all the tumoré (Figs. 2(a), 4 and
5(a)). The dynamic behaviors of A[HbO,] and A[Hb]ta in response to photo irradiation,
quantified by the time constants, are in the same order as those of tumor interior temperature, T-
middle (Table 1). This consistency suggests that the changes in tumor vascular contents result
from the changes in internal tumor temperature. We expect that an increase in tumor temperature

may lead to vessel dilation within tumor vasculature, further resulting in an increase in blood
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volume. Such an increase in blood volume will give rise to an increase in A[Hb}iot as well as

A[HbO,].

Besides thermal effects, it is reasonable to expect other photo-activation processes
involved in the laser irradiation. It is known that direct exposure of vascular tissue té visible
light causes vasodilation (42), while the thermal effect from visible light is minor.
Photoactivation has also been reported to cause upregulation of nitric oxide, and thus, producing
vasodilation (43-45). The increase of tumor blood volume demonstrated in our study due to laser
irradiation may be attributed to the vessel dilation under both thermal and photo effect.
Consistently, the single-exponential trend of A[Hb]ioa1, as well as of A[HbO,], in response to
laser irradiation indicated the existence of the limitation in vessel dilation. Furthermore, the
dynamic response of A[HbO,] and A[Hb};cr to the termination of photo irradiation is much
slowef than that of T-middle ( Figure 2(b) and Table 1), implying a slower recovery of

vasculature from its dilation.

Intriguingly, while A[HbO,] has the same dynamic trend as A[Hb);ta in response to photo
irradiation, the magnitude of A[HbO,] are more profound than that of A[Hb]iota (Figure 4). This
| phenomenon let us speculate that the increase in A[HbO,] comes from two parts: one part is from
the increase of A[Hb]a1, and another is from the conversion of deoxygenated hemoglobin to
oxygenated hemoglobin. The correlation of magnitude between A[HbO;] and A[Hb]ota
unambiguously demonstrates that the increased total hemoglobin concentration, due to blood
vessel dilation, is fully oxygenated immediately after the irradiation starts. It is also imply that
photo irradiation may increase the tumor oxygenation, which will be beneficial to some non-

surgical treatments, such as chemotherapy and radiotherapy (39). Also, this is perhaps the
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reason that low-intensity near infrared irradiation has documented benefits for promoting wound
healing in humans and animals (46-48).

However, when the laser irradiation power increased, A[HbO,], as well as A[Hb}otar,
showed interesting responses. In some tumors, both increased with laser power while in some
tumors both decreased, as shown in Figure 5(b). This may be due partly to the different tumor
conditions. One reason for the decrease of A[HbO,] and A[Hb].a1 might be that higher level
irradiations may destroy the vasculature in tumor, resulting in shut-down of blood supply to the
tumors. Further experiments will help better determine and uﬁderstand the changes of A[HbO,]
and A[Hb]ita under higher power levels of laser irradiatioﬁs.

In summary, changes in breast tumor temperature and vascular oxygenation have been
simultaneously measured using a multi-channel thermal monitor and an NIRS system, while the
tumors were under photothermal irradiation. The results have demonstrated that: 1) the
compatibility of thermal monitoring system and the NIR system permits simultaneous
determinations of thermal and vascular characteristics of the treated tumors; 2) photo irradiation
did have the ability to induce hyperthermic effect inside the rat breast tumors in a single
exponential trend, thus, leading to devstruction of the tumor cells; 3) the response of A[HbO;] and
A[Hb]eta to photo irradiation may be attributed to vessel dilation under both thermal and photo
effect; 4) the fact that the change in the magnitude of A[HbO,] is two times greater than that of
A[Hb]iota suggests that photo irradiation may enhance tumor vascular oxygenation. The primary
results from this study clearly suggest that besides a considerable thermal effect, low power
density irradiation éould also result in a significant enhancement of tumor vascular oxygenation.

This enhancement may lead to improvement of treatment efficiency.
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Figure Legends

Figure 1. Experimental setup for the simultaneous NIRS and thermal measurements of breast
tumors under photothermal therapy. PMT represents a photo multiplier tube; I/Q is an in-phase
and quadrature-phase demodulator for retrieving amplitude and phase infqrmation. The thermal
detection system comprises multiple thermal sensing probes, three of which are inserted into
different regions of the tumor, and one probe was used to measure room temperature. The
power- adjustable laser light (805 nm) is vertically delivered to tumor surface with a 2-cm beam

diameter for photo irradiation.

Figure 2. (a) Temporal profiles of the changes in tumor oxygenation and total hemoglobin
concentrations, A{lHbO,] and A[Hb]ota1, and three intra-tumor temperatures during photothermal
intervention in a representative DMBA-4 rat breast tumor (2.4 cm®). The profile is divided into 4
periods, and the laser irradiation was applied only in Period 3. (b) Respective single-exponential
curve fittings for the rising period of T-top, T-middle, A[HbO,] and A[Hb]tota; displayed in (a).
Single exponential fitting yields: T-top=5.76*(1-exp(-(t-14)/4.49)+ 24.95 with R=0.99; T-middle
=7.28*(1-exp(-(t-14)/14.3)+25.98 with R=0.99; A[HbO,]=0.093*(1-exp(~(t-14)/3.85)+ 0.013
with R=0.98; A[Hb]mml =0.044*(1-exp(-(t-14)/3.95)+0.012 with R=0.98; (c) Respective single-
exponential curve fittings for the falling period of T-top, T-middle, A[HbO,] and A[Hb]ota
displayed in (). Single exponential fitting yields: T-top = -4.48*(1-exp(-(t-25)/3.86)+29.23 with
R=0.98; T-middle = -3.83*(1-éxp(-(t—25)/ 12.29)+30.42 with R=0.99; A[HbO,]=-0.163*(1-exp(-

(t-25)/18.5)+ 0.10 with R=0.94; A[Hbow]= -0.114*(1-exp(-(t-25)/24.3)+ 0.06 with R=0.92.
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Figure 3. Average changes in temperature from the 10 rats for T-top, T-middle and T-bottom.

Figure 4. Relationship between A[HbO;] and A[Hb}ot for the 10 rat tumors under single laser
irradiation treatment (0.32 W/em? for 10 minutes) with a linear fit of A[Hb]ita =0.54*A[HbO,] -
0.0039 (the solid curve) and a correlation of R>=0.96. The dashed line represents the situation of

A[HbOz]: A[Hb]total-

Figure 5. (a) The temporal profiles of vascular A[HbO,], A[Hb}i. and temperatures of a tumor
(#6, 3.0 cm®), in response to repeated laser irradiations with different laser power densities (0.32,
0.64, 0.96 and 1.27 W/em?) for a 10-minute treatment cycle with a 10-minute recovery period
between each treatment. (b). Thé correlations between the changes in A[HbO;] (solid triangles),
A[Hb}otar (squares), T-middle (open triangles), and laser irradiation power densities in the

tumors.

Figure 6. (a) Correlations between the maximum changes in T-middle reached at the end of each

photothermal treatment cycle and the optical irradiation power density from the 10 treated rats.
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Tablel. Time constants of T-top, T-middle, A[HbO,], and A{Hb}:.t with respect to photo
irradiation and termination

tumor 3size Rising part (in response to irradiation)  Falling part (in response to termination)
(cm’)
Ttop T-middle [HbO,] [Hb]tota Ttop  T-middle [HbOy] [HbJota

24 4.49 14.3 3.85 3.95 3.86 12.29 18.5 243
25 2.47 6.77 1.99 1.53 3.17 8.27 50 74
0.68 4.83 4.83 1.76 1.66 3.87 4.45 20 25
0.53 461 7.62 1.84 1.91 _4.56 8.37 3.63 275
1.2 3.28 5.17 6.9 9.8 4.20 6.30 80 120
3.3 470 6.65 . 7.34 7.83 3.58 4.45 11.3 299
1.9 1.89 3.85 10.0 12.0 1.30 3.43 28 37
34 2.69 313 - 6.76 7.81 -2.96 458 35 45
21 3.25 4.31 7.32 7.58 4.52 5.65 235 30
3.0 4.50 7.80 5.60 8.40 5.50 8.30 15.5 23.4
Average 37 6.4 53 6.2 3.8 6.6 28. 41

S.D. 1.1 3.2 2.8 3.7 1.2 27 22. 33




Appendix 5

Estimation of blood volume fraction sampled by
near infrared spectroscopy and ’F magnetic
resonance spectroscopy
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Abstract: The purpose of this study is to introduce an experimental
approach to estimate the percentage of blood volume sampled by near
infrared (NIR) system. Carbogen (5% CO, 95% O,) respiratory
intervention was used to induce physiological changes in a group of Fisher
rat breast tumors. The change of total hemoglobin concentration, A[Hb}itar,
and of tumor blood volume, AV1.j004, in 6 breast tumors were measured by
near infrared spectroscopy and F magnetic resonance spectroscopy of
perflubron, respectively. The ratio of A[Hb)iu/AVrbioa Was used to
calculate the blood vascular percentage sampled by NIR spectroscopy. The
overall results showed that the mean value of the vascular blood volume
fraction interrogated by the NIR measurement is within the range of
15~30% of total blood volume in tumor tissues. Such information is useful
in understanding the sampling area most sensitive by the NIR techniques,
practically valuable in assessing absolute changes in vascular hemoglobin
concentrations and oxygenation in solid tumors under therapeutic
interventions.
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1. Introduction :

In biomedical research, optical spectroscopy and imaging can potentially provide rapid,
economical, and non-invasive diagnostic links between crucial tissue characteristics and
cancer detection or diagnosis [1-7]. Near infrared (NIR) light in the range of 700 nm to 900
nm has an optimal penetrating depth in tissue (up to 15 centimeters), since photon transport in
tissue is dominated by light scattering rather than absorption. Therefore, the use of NIR light
enables sampling of large tissue volumes, such as the breast, brain, and skeletal muscles as
well as tumors deep in the tissue. In the NIR spectral range, two important endogenous tissue
chromospheres, i.e., oxygenated and deoxygenated hemoglobin (HbO, and Hb, respectively),
display oxygen-dependent absorption features [8,9]. Experimental determination of absorption
quantities of tissue can provide an indication of several physiological parameters, such as
hemoglobin /myoglobin concentrations, vascular oxygenation, and blood volume changes.
Such quantification could be important in cancer investigations with a potential for impact in
cancer research, as we have demonstrated in our previous reports [10-12].

However, although the measurement of absorption by the endogenous tissue
chromosphere can be quantified accurately, it is not known as how much the total blood
volume within the tissue is sampled by NIR system. It has been reported that NIR system is
most sensitive to microvessel density (i.e., arterioles, capillaries, venules)[13-14]. The opaque
microstructures in tissue have also contribution to the absorption [15]. The measured
absorption is actually a volume-weighted average absorption of the sampled vessels and the
surrounding tissue. Thus, the measured chromosphere concentration is usually less than the
actual value. Meanwhile, the blood flow measured by NIRS was reported 2~3 times lower
than the plethysmographic flow[16-17]. These reports motivated us to investigate what the
percentage of blood volume in tissue is sampled by NIR system. In particular, tumor tissue is
recognized as high heterogeneous and angiogenous. Accurate determination of tumor
vascular blood by NIRS may provide crucial information for assessing tumor progress and
guiding tumor treatment.

Several investigators have shown that vascular blood volume can be estimated by °F
NMR (Nucleus Magnetic Resonance) spectroscopy following infusion of a perfluorocarbon
blood substitute emulsion [18-19]. And our previous reports indicated the ability of NIR
spectroscopy as a monitoring tool for the changes in tumor total hemoglobin concentration.
Correlating NMR and NIR measurements could then provide an experimental approach to
estimate the percentage of blood volume sampled by NIR spectroscopy in solid tumors.
Specifically, we performed measurements of changes in total hemoglobin concentration,
A[Hb)i1, and changes in tumor blood volume, AVy.,.4, in breast tumors using near infrared
spectroscopy (NIRS) and '"F magnetic resonance spectroscopy (MRS) of perflubron
(formerly called perfluorooctyl bromide or PFOB), respectively. The ratio of A[Hb],ua/AVr.
blood Was used to calculate the fractions of blood volume sampled by NIRS and MRS in
tumors.




2. Materials and Methods
2.1 Near Infrared spectroscopy for the measurement of A[Hb] 1

A homodyne, frequency-domain NIRS system (NIM, Philadelphia, PA) was used in our
experiments, as described in detail previously [10-12]. Briefly, the amplitude-modulated light
at 140 MHz from two NIR laser diodes at 758 nm and 785 nm was projected on one side of
the tumor through a delivery fiber bundle. The diffused light through the tumor was collected
and propagated to a photomultiplier tube (PMT) by a second fiber bundle. The signal from the
PMT was demodulated through an In-phase and Quadrature-phase circuit, and the amplitude
and phase were recorded. Figure 1 shows the schematic diagram. Based on modified Beer-
Lambert’s law [10,20-21] and the recorded amplitude, the changes in oxy-, deoxygenated
hemoglobin and total hemoglobin concentrations, A[HbO,], A[Hb] and A[Hb]s due to
respiratory intervention were estimated as described below. In this NIRS system, phase signal
possess high noise, only amplitude signal was used for the calculation.

A A
J[95%.0,, |[tsomm:

Fig. 1. Schematic diagram of experimental setup for the NIR spectroscopy system. A 3 mm-diameter
fiber bundles deliver and detect the laser light through the tumor in transmittance geometry. PMT
represents a photomultiplier tube. I/Q is an in-phase and quadrature phase demodulator for retrieving
amplitude and phase information.

2.2PF MRS of perflubron for the measurement of tumor blood volume Vr.p1004

An Omega CSI 4.7 T superconducting magnet system (Acustar™, Bruker Instrument, Inc.,
Fremont, CA) was used for the measurement of tumor blood volume. The artificial blood
substitutes [18-19], An emulsion of perflubron (Oxygent™,Alliance Pharmaceutical Corp.,
San Diego, CA) (2ml) was infused into a tumor breathing rat i.v. as a blood volume
indicator. The tumors were placed within a frequency-tunable ("H/*°F), single-turn, solenoid
coil, together with a sealed capillary containing sodium trifluoroacetate (TFA), which was
used as an external standard for quantifying/calibrating tumor blood volume,

Under fully relaxed conditions, integration of F signal from the tumor was linearly
proportional to the total number of °F nuclear spins of perflubron in the tumor, which, in
turn, was linearly proportional to the total blood volume in the tumor, assuming that the
perflubron emulsion had reached an equilibrium state with the blood throughout the tumor
[22]. To ensure full relaxation a repetition time (TR) of 30 seconds was used. The spectral
peaks of perflubron were integrated in the data post-processing. Following the tumor
measurement, the rat was removed leaving the reference TFA capillary in the original
position in the RF coil. 0.5 ml blood was drawn from the rat tail vein and Blaced in the RF
coil without disturbing the reference TFA capillary. Another quantitative "°F spectrum was
acquired. Thus, the tumor blood volume can be calculated based on the following equation:

IT_blood)‘(IS_TFA ) M

VT_blood = VS_blood '(I 1
S_blood T_TFA

where, V1 pigea and Vs pioeq Were the tumor blood volume and blood sample volume (ml),
IT blood and Is pioea Were the integrated NMR signal from '°F of perflubron in the rat tumor and
in the blood sample, respectively and Ipicoq Tra and Irymer Tra Were the integrals of the R
NMR signal from the TFA capillary.




2.3 Animal model and protocols

Mammary adenocarcinomas 13762NF were implanted in skin pedicles [23] on the forebacks
of female Fisher 344 rats (~150 g). Once the tumors reached 1~2 cm diameter, rats were
anesthetized with ketamine hydrochloride (100 mg/ml, i.p.) and maintained under general
gaseous anesthesia with 1.3% isoflurane in air (1 dm’/min). Tumors were shaved to improve
optical contact for NIR light transmission. Tumor volume was estimated using an ellipsoid
approximation (V=(r/6).a.b.c) from the three orthogonal diameters (a,b,c) measured with
calipers.

In this study, breast tumor bearing Fisher rats were challenged with carbogen (95% O, +
5% CO,) in the sequence air-carbogen—air. The A[Hb],. values with respect to the carbogen
inhalations were monitored by NIRS. For rats exhibiting a significant A[Hb},. in response to
hyperoxic gas, the same rat was re-anesthetized in the next day and infused with 2 ml of
perflubron emulsion. '°F MRS measurement of tumor blood volume was performed 30 min
later allowing sufficient time for the perflubron emulsion to reach an equilibrium state within
the blood. The inhaled gas sequence was repeated. Six breast tumor rats exhibited significant
responses in A[Hb],. to hyperoxic gas intervention and were studied here.

3. Algorithm for calculations of A[Hb],; and fraction of sampled blood volume

Based on Beer-Lambert’s law, optical attenuation, presented by Optical Density (OD), can
be expressed as a function of concentration of chromospheres (24-28),

Optical Density (OD)= Log(AyA4) =ecl ¢}
where 4, and A4 are light intensities of the incident and transmitted light, respectively, € is the
extinction coefficient of chromospheres, c is the concentration of chromosphere, and / is the
optical path-length through the measured sample. When the measured sample has a mixture
of chromosphere, i.e., oxygenated and deoxygenated hemoglobin in tumor tissue, the changes
in oxygenated and deoxygenated hemoglobin concentrations (A/HbO,], A[Hb]) can cause a
change in optical density, which can be evolved as (26-28) the following:

AOD(?) = log(Ay/A1) = {em(A)A[HD] + Emor(YA[HBO,]} 1 @

where AOD(A) represents a change in optical density at the specific wavelength, A. 45 and 47
correspond to light intensities measured under the baseline and transient conditions. &ys(4)
and gg05(A) are the extinction coefficients at wavelength A for molar concentrations of
deoxygenated hemoglobin, [Hb], and oxygenated hemoglobin, [HbO,], respectively,
assuming ferrihemoglobin is minimal. By employing two wavelengths in Equation (2), both
A[HbO,] and A[Hb] can be determined by measuring the AOD values at the two specific
wavelengths, provided that the values for g;(4) and gxp0,(4) are known:

epp(A2)A0D( A4 ) — ey (24 )A0D( A3 ) 3)

AHbO = s
[H60] Hews( A2 Jemmo2( 1) - erp( Y1 )emo2(A2))

Expo2( A2 )A0OD( A1) — €poa (44 )A0D( A5 ) '
Hews (A )epo2(A2) — e (A2 )egpoa(A2)]

A[Hb] = (@)

Note that in principle, / represents the optical path length between the source and
detector. While / is simply the physical separation, d, between the source and detector
through a non-scattering medium, exact quantification of / for an intact tissue or organ is
complex because of light scattering in tissue. Since / is in proportion to the separation, d, we
can associate / to d as I=DPF*d, where DPF is a differential path length factor to account for
light scattering. It has been well accepted that together with DPF, Equation (2) can be treated




as modified Beer-Lambert’s law; and consequently, Equations (5) and (6) can be correctly
used to quantify changes in [Hb] and [HbO,] in highly scattering media, such as in intact
tissue or organs.

To be consistent with our previous work, we adopt in this paper the & values
published by Zijlstra et al (29). We had to interpolate the € values at the two wavelengths
employed in our study, i.e., €5,(758 nm) = 1.418, €p0,(758 nm) = 0.6372, €1(785 nm) =
1.111, and €;1,0,(785 nm) = 0.766, all in mMcm™. Note that a factor of 4 has been multiplied
for each of the €’s at the respective wavelengths to account for light absorption from 4 hemes
per hemoglobin molecule (30) since the extinction coefficients published in the field of
biochemistry were expressed on a heme basis (26-30).

To further calibrate the calculation of A/HbO,], A[Hb], and A[Hb],y derived in
Equation (5)-(6) with the interpolated extinction coefficient, we conducted a serial of
phantom experiments, which was previously described in detail (11). The calibration
performance gave rise to two empiric factors B; and B,, where B;=1.103 and $,=0.9035, as
given below:

E(7801M)  OD(7581m) - &11,(758nm)x OD(785mm)

b
A[HbO, ] = , @
[Hb02] 1 15(785 1m )€ 12 (758 nm ) — €51 (758 nm )€ 02 (785 nm)| M

Em02(7851M) . (01 (758 rim) — 13002 (758 nm) x OD(785rm)

_ B
AlHb] = I e (785 nm e gpo2(758 nm ) — &4, (758 nm )& po2 (785 nm)]| - ®

After substituting all of the parameters into Equations (7) and (8), we have arrived at the final
equations to quantify changes in hemoglobin concentration:

~2.658-0D(758nm ) +3.743-OD(785nm)

A[HbO,] = 9
[HbO,] o ©)
AJHB] = 2.238~0D(758nm)—1.683-0D(785nm). (10)
d* DPF
A[Hb],11 can also be obtained by adding Equations (9) and (10),
A[Hb] ot = A[HbO,] + A[HE] = —0.42-0D(758nm )+ 2.06-OD(785nm) an

d*DPF

The units of AfHbO,], A[Hb], and A[Hb] ., are mM; Since DPF is so far an unknown
parameter for tumors, we include it within the unite as mM/DPF in the relative measurements.
Here, a reasonable range of 2~4 was assigned in this study (reference ). Based on the
amplitude measured from NIR spectroscopy and Equation (11), we can get the changes of
total hemoglobin concentration, A/Hb /]y, in breast tumors under carbogen intervention.

On the other hand, the changes of tumor blood volume, AV7 4004, With respect to carbogen
inhalation can be obtained from MRS measurement. Assuming K is hemoglobin
concentration in gram/liter in blood, M is hemoglobin molecular weight in gram/mole, V7.
physical TEpTESents tumor physical volume in cm’, the average changes of tumor hemoglobin
concentration, AC, sampled by MRS can be expressed as




AVr_piood * K

/ (12)
M*Vp_ physical

AC =

The unit for AC is mole/liter =10° mM. The percentage of tumor vascular blood volume
sampled by NIRS and by MRS can be expressed as:

A[Hb o1 *100% = A[Hb ] 115 *M*VT—PhySica’ *100% (13)
AC AVr_plood * K

Taking K=150 g/i [30] and M=68000 g/mol [31], the percentage can be deduced from

Eq.(13) based on the measurements of A[Hb ]y and AVT sioog from NIRS and MRS,
respectively.

4, Results

The changes of total hemoglobin concentration, A[Hb ]total, and blood volume, Vr.p100, Were
monitored by NIR spectroscopy and 'F MRS of perflubron on consecutive days,
respectively. Figure 2 shows the time course profiles of A[Hblia and Vi On @
representative breast tumor (2.6 cm’) with respect to carbogen intervention. When the inhaled
gas was switched from air to carbogen, A[Hb},., increased significantly (p<0.0001) from a
baseline value of 0.0005 = 0.0015 mM/DPF to a maximal value of 0.0199 £+ 0.001 mM/DPF
over the period of carbogen intervention, with a maximal increasing of 0.0194 mM/DPF.
After the gas was switched back to air, a significant drop (p< 0.0001) of A[Hb),,, occurred,
and followed by a plateau at 0.009 + 0.001 mM/DPF.
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Fig. 2. Time course profile of A[Hb] row and Vir.pieea for a representative breast
tumor (2.6 cm®) with respect to carbogen (CB) intervention, monitored by NIRS
and F MRS of perflubron, respectively. Error bars indicated the standard
deviation

A similar time course pattern in response to carbogen intervention was displayed for V.
blood- Spec1ﬁcally, Visiooa increased 51gn1ﬁcantly (p<0.0001) from a baseline of 0.809 + 0.004
cm’ to the maxlmum of 0.837 + 0.004 cm’ during carbogen intervention, having a maximal
change of 0.028 cm’ in tumor blood volume. The average changes of tumor hemoglobin

concentration, AC, obtained from MRS can be calculated as

AVr_po0d * K 0.028*150
M*Vr_pysical  68000%2.6

aC = =0.0237(mM)




From NIRS measurement, we get A[Hb]s =0.0194 mM/DPF. If considering DPF = 2~4,
A[Hbliy = 0.0097 ~ 0.0049 mM. Thus, the percentage of tumor vascular blood volume
sampled by NIRS over the tumor blood volume measured by '°F MRS is within the range of
20.4%~40.8%.

Data for all the breast tumors are shown in Table 1. The tumor vascular blood percentage
sampled by NIRS is within the range of 16.7~47.2% (considering DPF=2) and 8.4~23.6 %
(considering DPF=4).The mean value of the percentage is about 15+ 6 % ~ 30+ 12 %. No

obvious correlation between percentage values and tumor volume was found (Figure 3).

Table I Percentage of tumor vascular blood volume sampled by NIRS over that by '°F MRS

Tumor physical A[Hb)iomt AV1.ti00d A[Hb]ieut/ AC A[Hb]w/ AC

volume (mM/DPF) (em?) (%) (%)

(cm’ DPF=2 DPF=4

1.6 0.0258 0.056 16.7 8.4

12 0.0616 0.067 250 12.5

19 0.0525 0.081 279 13.9

25 0.0375 0.045 472 23.6

2.6 0.0194 0.028 40.8 204

2.2 0.0219 0.056 18.7 9.4
Mean % S.D. 0.0365+0.017 0.056+0.018 30+£12 15+6

T S.D. indicates standard deviation
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Fig. 3 Percentage of tumor vascular blood sampled
by NIRS vurse tumor physical volume

5. Discussion

In this study, we introduced an experimental approach to estimate the percentage of tumor
vascular blood volume sampled by NIR system. Changes in breast tumor total hemoglobin
concentration, A[Hb],,, and in tumor vascular blood volume, AVry,04, With respect to
carbogen intervention were monitored by NIR spectroscopy and '’F MRS of perflubron,
respectively. The ratio of A[Hblw/AVrswea Was used to calculate the fraction of blood
volume sampled by NIRS and MRS. Since the modality of ’F MRS of perflubron can sample
all blood volume in the tumor within the RF coil of the magnetic machine[18-19 ], the -
fraction calculated from our experiments can be considered as the percentage of tumor
vascular blood volume sampled by NIR system. With the available MRS facility and the
simple NIR DC signal, this experimental approach first provides the estimated percentage of
blood volume sampled by NIR system, with a average range of 15~30% ( Table 1). This
range gives investigators in NIR field an important reference for quantifying their
measurements. In other hand, the consistent response trends between A[Hb]y and AV go0q
during hyperoxic gas interventions (Fig.2) convinced the investigators in the NMR field that




low cost, portable NIR system can be a reliable non-invasive real time monitoring tool for
changes in tumor blood contents.

As known, the NIR light propagated in tissue is dominated by scattering rather than
absorption, although the quantification of vascular blood contents is based on the absorption
of oxygenated and deoxygenated hemoglobin. Due to the fact that the size of microscopic
blood vessel (arterioles, capillaries, venules) is in the same order of magnitude as the average
scattering length in tissue( ~100pm) [15, 31], NIR light was multiple scattered by the small
blood vessel. This multiple scattering allows the blood in small vessel to be sampled several
times, causing the high sensitive of NIR signal to small vessel and enhancing the blood
absorptions. However, despite the large number of small vessels, only 250 ml out of 5000 ml
blood volume (5%) is in capillaries. A large amount of blood is in big vessel, which is less
sensitive to NIR signal. Moreover, small vessels have lower hematocrit compared to big
vessel because of the reducing of hematocrit with the decreasing of vessel diameter [32].
Thus, the NIR system only samples a small portion of blood hemoglobin. 15~30% estimated
from our experiments may have included the factor of multiple scattering in tissue.

As seen in Equation (9)~(11), DPF is a very important parameter for quantifying NIR
measurements. Many investigators [33-37] have conducted research on the estimation of
optical path length of the brain and muscle of both human subjects and animal models.
Typical DPF factor was estimated within the range of 5~6 for human brain and 3~4 for
muscle, independent of the source-detector separation when d>2.5cm [38-39]. However, the
NIR light propagated in tumor tissue is different from that in brain and muscle. Due to tumor
angiogenesis, tumor tissues possess more blood vessels and have higher light absorption than
the normal brain and muscle. Furthermore, the solid tumors in the study have finite size,
where “photon escape” from the measured volume can take place [40]. The term of “photon
escape” has been used to refer to the situation where the sample size under study is finite,
and a large amount of light may escape from the sample and never be detected, leading to a
shorter path length in comparison with the path length in other large volumes of tissues.
Steen et. al took DPF = 2.5 for their tumor study [41]. Therefore, DPF=2~4 is a reasonable
maximal range for breast tumors.

Indeed, the accurate DPF for breast tumors could be derived from time-resolved and
intensity-modulated spectroscopy, which determines the photon mean time-of-flight and the
phase shift of an intensity-modulated light wave, respectively. Meanwhile, the errors in the
percentage measurement can be potentially reduced by conducting measurements of NIRS
and "°F MRS simultaneously, thus, to eliminate experimental variations between the two
kinds of measurements. One might also apply '"H MRI of vascular volume markers such as
the super paramagnetic iron oxide particles (SPIOs) [42-43] in place of the 'F NMR
approach used here. Since agents such as Combidex are in clinical use, correlated studies
with NIR could allow examination of percentage of blood sampled by NIR system in human
tumors. The uncertainty in both the size measurement and volume calculation will contribute
to the error critically in the estimated percentage.

Also, no obvious correlation between the percentage of blood volume sampled by NIRS
and tumor size has been observed (Fig. 3), which is possiblely due to fact that the tumor size(
<2.6 cm?®) is not big enough to induce necrosis in the central of the tumors, and thus, no
structure changes occurred. In our study, not all tumors showed a change accompanying
challenge with hyperoxic gas, and thus many additional tumors were tested by NIRS, but
deemed unsuitable for this study due to lack of response[44]. In other contexts, response
versus lack of response may be significant observation for tumor biology.

In conclusion, we have introduced a new experimental approach to estimate the
percentage of tumor blood volume sampled by NIR system by combining the measurements
of NIRS with '°F MRS. The results gave rise to a percentage range of 15~30%. The practical
importance and usefulness of this study is the potential capability for investigators to quantify
absolute changes in vascular hemoglobin concentrations and oxygenation in solid tumors
under therapeutic interventions, which could be important for cancer prognosis and therapy
planning.
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- ABSTRACT

Purpose: The goal of this investigation was to demonstrate the feasibility of applying
Near Infrared Spectroscopy (NIRS) to examine tumor vascular dynamics. Various
interventions expected to modulate the concentration of oxygenated hemoglobin,
A[HbO], and total hemoglobin, A[Hb}wta, were evaluated in rat breast tumors.

Methods and Materials: Transmission mode NIRS was applied to 13762 breast
adenocarcinomas, while the Fisher rats were exposed to respiratbry challenge with the
hyperoxic gases carbogen (5% CO. and 95% 0O), oxygen, a hypercarbic mixture of 5%

CO: in air and with respect to infusion of the vasoactive agent hydralazine.

Results: Repeated carbogen breathing yielded increases in vascular oxygenation with
highly reproducible modulation both in magnitude and response time. Carbogen and
oxygen breathing each significantly elevated oxygenation of the tumor vasculature,
however, the rate and pattern of response differed and depended on the sequence of
gas breathing. Addition of CO; to air generated a small, but significant elevation of
A[HbO;]. Hydralazine administration during carbogen or air breathing decreased both
the vascular oxygenation and tdtal vascular hemoglobin (vascular volume) significantly.

Conclusions: These results demonstrate NIRS as a non-invasive, real-time means for
monitoring tumor vascular oxygen dynamics in response to acute interventions,

indicating potential utility for evaluating novel therapies and possibly treatment planning.

Keywords: Near infrared spectroscopy, breast tumor, oxyhemoglobin, carbogen,

hydralazine.
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1. Introduction

There is increasing evidence that tumor oxygenation plays a critical role in
disease progression and response to therapy. In particular, modulation of tumor
oxygenation may improve therapeutic outcome, since hypoxic cells resist radiotherapy
and certain drugs exhibit selective cytotoxicity. Several recent studies have shown poor
prognosis for patients with relatively hypoxic tumors of the cervix and head and neck (1-
4) and extensive hypoxia has been found in tumors of the prostate and breast (5, 6).
While many attempts to improve therapeutic outcome by manipulation of tumor
“oxygenation have shown only modest success (7), recent work by Kaanders et al. (8)
has shown dramatic improvement for patients with hypoxic head and neck tumors,
when treated with the ARCON protocol. Thus, there is a developing interest in
measuring tumor oxygenation, and many techniques have been developed for
quantitative measurement of pO, (9, 10), e.g., electrodes (11), optical probes (12-14),
EPR (15-17), and "°F MRI (18-21). The Eppendorf Histograph has provided extensive
clinical data showing correlation between tumor oxygenation (either median pO; or
hypoxic fraction) and therapeutic outcome and is considered by some to be a “gold
standard”. Other techniques detect hypoxia itself using labels such as pimonidazole or
EF5 (8, 22) in biopsy specimens, though imaging approaches are being developed (23).

Near-infrared spectroscopy (NIRS) offers an alternative approach based on the
differential light absorption of the strong chromophores oxy- and deoxy hemoglobin (Fig
1a). NIRS provides a non-invasive means to monitor global tumor vascular oxygenation
in real time based on endogenous molecules. While many investigations have been

conducted in the brain and breast in both laboratory and clinical settings over the last
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decade, there have been relatively few reports of NIRS studies of solid tumors (12, 24-
34). Most studies to date have used reflectance mode. By contrast, we have favored
transmission mode, so as to interrogate deep tumor regions, and we have presented
preliminary studies in rat breast and prostate tumors with respect to various
interventions (12, 25, 26). In this study, we have extended our investigations to larger
cohorts of animals and more diverse interventions to investigate vascular oxygenation.
Specifically, altering inhaled gas from air to oxygen, carbogen (95% &, and 5% CO)
and a hypercarbic air mixture (5% CO. in air), as well as administration of the

vasoactive agent hydralazine (HDZ).

2. Methods and Materials
2.1 NIRS for measurement of changes in [HbO.] and [Hb}otal

The homodyne frequency-domain NIRS system (NIM, Philadelphia, PA) used in
this study has been described in detail previously (25). Briefly, as shown in Fig. 1(b), the
amplitude-modulated light (140 MHz) from two NIR laser diodes at 758 nm and 785 nm
was coupled into a bifurcated fiber bundle and illuminated on one side of the tumor. The
light diffusing through the tumor was collected by a second fiber bundle and propagated
to a photomultiplier tube (PMT). The signal from the PMT was demodulated through an
In-phase and Quadrature-phase circuit, and the amplitude variations recorded.
Absorption of the NIR light by the two major absorbers within the tumor tissue,
oxygenated and deoxygenated hemoglobin, can be quantified by modifying Beer-

Lambert's law (25). Changes in oxygenated, deoxygenated, and total hemoglobin



Mason 5

concentrations, i.e., A[HbO;], A[Hb] and A[Hb}ta are calculated using equations, which

have been derived previously (12, 26):

~10.63- log(A ZBy758 11497 log( B y785

A[HbO,] = T - At , (1)

8.95- log( Z2By738 _6.73-log( iB)785

A[Hb] = I - ., ()

A[Hb}otar = A[HbO2] + A[Hb], (3)

where Ag and At are the baseline and transient amplitudes mealsured from the NIR
system, respectively, and “d” is the source-detector separation, subject to the differential
path-length factor (DPF) for tumor tissues. Thus, A[HbO;], A[Hb] and A[Hblta all have
relative units of mMM/DPF. The four coefficients in the equations were derived using the
extinction coefficients of Hb and HbO, at corresponding wavelengths and have been

corrected for the pathlength differences at the two wavelengths (26).

2.2 Animal model and protocols

The Institutional Animal Care and Use Committee approved these investigations.
Rat mammary adenocarcinomas 13762NF (35) (originally obtained from DCT, NCI)
were implanted in skin pedicles (36) on the foreback of adult female Fisher 344 rats

(~150 g). Once the tumors reached 1~3 cm diameter, rats were anesthetized with 150-
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pl ketamine hydrochloride (100 mg/ml, i.p.) and maintained under general gaseous

anesthesia with 1.3% isoflurane in air (1 dm®min). For gas interventions, the anesthetic
and gas flow were maintained at a constant level. Tumors were shaved to improve
-optical contact for NIR light transmission, and the body temperature was maintained at
37 °C using a warm water blanket. Tumor volume was estimated using an ellipsoid
approximation (V=(n/6).a.b.c) from the three orthogonal diameters (a,b,c). In some
cases a pulse oximeter (Nonin Medical Inc., Plymouth, MN) was applied to the hind foot
to assess dynarrﬁc response of arterial oxygenation.

In this study, four groups of rats were used to investigate the dynamic response
of breast tumor oxygenation to interventions. Group 1 (n=8) experienced repeated
carbogen breathing using the sequence air-carbogen-air-carbogen-air to demonstrate
reproducible effects of carbogen on tumor oxygenation. Group 2 (n=7) breathed the
sequence air-carbogen—air-oxygen-—air, while Group 3 (n=7) experienced the reverse
sequence (air-oxygen-air-carbogen-air), so as to compare the two hyperoxic gas
interventions and allow for any preconditioning. A subgroup (3A) also received an i.v.
infusion of hydralazine (HDZ; 5 mg/kg in 0.5 ml saline, Sigma) as a bolus by hand (< 1
min) in the tail vein during the carbogen breathing (air-oxygen-air-carbogen-
carbogen+HDZ-air; n= 5). Group 4 (n=5) experienced air-hypercarbic air (5% CO; in
air)—carbogen—air—dxygen—air—air+HDZ, to investigate the effect of CO, on the tumor

vascular bed. Each gas was applied for 20-24 minutes in all the breathing sequences.
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3. Results

Figure 2a showé the typical time course for response of A[HbO,] to successive
carbogen interventions for a representative Group 1 tumor (No. 2, 9.9 cm3). When the
inhaled g‘as was switched from }air to carbogen, A[HbO:] increased rapidly and
significantly p < 0.0001) from the baseline to about 0.87+ 0.03 within the first two
minutes, followed by a slower, but further significant increase (p<0.001) over the next 21
minutes. Returning to air breathing produced a significant drop (p < 0.0001) of A[HbO;]
with asymptotic tendency towards the baseline value. A very similar temporal response
was observed during the second cycle of carbogen intervention. The magnitude of
response was highly consistent, as shown for the eight individual tumors in Fig. 2b (R?
>0.92). In addition to magnitude of response, the dynamic behavior of A[HbO;] with
respect to carbogen intervention may be characterized by time constants for
exponential curves (25). We have previously found that a bi-exponential fit is required to .
represent the biphasic nature of the response to carbogen breathing, and fitted curves
are overlaid on Fig. 2a. We believe the fast component represents rapid arteriolar inflow

with a typical time constant < 1 minute, whereas the 2™ component is more sluggish.

The ratio T1/12 reveals the relative efficiency of these components, which was highly

reproducible for the successive interventions (Fig. 2c).

To assess the relative ability of oxygen versus carbogen to modulate tumor
vascular oxygenation, response to the two gases was compared. Separate groups of
rats received the gases in reversed sequence in order to reveal any preconditioning

effects. Figure 3 shows the time course of A[HbO,] for a representative 13762NF breast

tumor (3.2 cm®) in Group 2. The carbogen intervention produced a similar biphasic
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response of A[HbO,] to that seen for Group 1. Following the initial exposure to carbogen
and 20 minutes of air breathing for re-equilibration, the rat was exposed to oxygen. As
with carbogen, there wés a rapid increase in A[HbO,] within the first 2 minutes, but this
was followed by a plateau and curve fitting required a single exponential only. The
maximal response of A[HbO,] to carbogen and oxygen interventions was similar, as
shown in Fig. 3b. While each gas produced é significant elevation in A[HbO,], there was
no significant difference in magnitude for these two hyperoxic gas interventions (p>0.3).
However, we note that 20 mins was sometimes insufficient time for A[HbO;] to return to
baseline after carbogen breathing. Thus, the apparent increase is based on an elevated
starting point. To address this potential anomaly, we considered both the asbending
response with each hyperoxic gas and the ascending response to carbogen versus the
decrease following oxygen inhalation, which occurred more rapidly (Fig. 3a). Indeed,
both the increase and the decline in A[HbO,] were significantly faster with respect to
oxygen breathing than carbogen (Fig. 3c, d).

In order to examine the possible effect of preconditioning, tumors in Group 3
experienced the “reversed” gas intervention, with exposure to oxygen prior to carbogen
(Fig. 4a). As for Group 2, the maximal changes of A[HbO-] due to oxygen or carbogen
intervention for each of these 7 tumors were found to be similar (Fig. 4b). However, both
interventions now produced a monophasic response: in 6 of the 7 tumors the biphasic
response to carbogen was no longer seen.

To further explore the vasoactive contribution of the CO, component, rats in
Group 4 inhaled a hypercarbic air mixture (air + 5% CO), followed by carbogen (95%

02 +5% COy,). Fig. 5a shows the time course of A[HbO,] for a representative tumor (1.9
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cm®). When CO, was added to the inhaled air A[HbO,] increased immediately, and
significantly, to a plateau 0.15 £ 0.01 (normalized to the maximum value achieved with
hyperoxic gas; p<0.05). Response to carbogen was as before. Typically, addition of the
CO2 component to air caused A[HbO-] to increase by about 10-20% of that due to
carbogen (Fig. 5b).

Several rats were also infused with HDZ during carbogen (subgroup 3A) or air
breathing (Group 4), and the response of A[HbOy] is shown for representative tumors in
Figs. 4a and 5a. For Group 3a, the mean decrease in A[HbO,] was 0.8 £ 0.2 for the
transition oxygen to air, 1.2 % 0.4 following HDZ administration during carbogen
breathing, and a further 0.5 + 0.3 for the final switch back to air. The decrease in
oxygenation due to hydralazine was generally greater than the change accompanying
oxygen to air breathing. However, the change attributable to HDZ was not significantly
different during carbogen (Group 3a) or air (Group 4) breathing.

In addition to A[HbO:], dual wavelength NIRS can also show changeé'in total
hemoglobin (A[Hb}eta)), as shown by equation 3. Fig. 2a indicates that A[HbJotal
increased in response to breathing carbogen with a response about 20% of that for
A[HbO7]. This was typical of many tumors, though some showed minimal response and
often there was a continual drift throughout the variation in inhaled gases (Figs. 4a and
5a). Return to air breathing rarely reversed the A[Hblow and minimal change
accompanied initial oxygen or secondary carbogen challenges (Fig. 2a, 4a, 5a). In
some cases, A[Hbta increased with addition of CO» to air, but the pattern was highly

variable. Infusion of HDZ always caused a significant decline in A[Hb}wtar, and during air
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breathing the magnitude of the changes approached or exceeded the change in

A[HbO:].

4, Discussion

These studies reveal the vascular response to breathing hyperoxic and
hypercarbic gases and the vasoactive pharrﬁacological agent hydralazine. NIRS is non-
invasive and provides a real time assessment of changes in tumor vascular hemoglobin
saturation. These investigations provide a considerable extension of our previous NIR
studies of tumors (12, 25, 26), in terms of numbers of animals, range of interventions,
and extent of analysis. Most importantly, the results provide further demonstration of the
ease and utility of NIRS studies of tumors. -

As we have previously observed in various rat tumors (12, 25), switching the
inhaled gas from air to carbogen .'produced a rapid biphasic elevation in hemoglobin
oxygenation. The rapid component has a time constant in the range of seconds to a
minute, and approaches that observed for arterial oxygen saturation detected in the
hind foot with a pulse oximeter (Fig. 3a). The slow component (10 to 50 times slower)
continues for many minutes, and generally represents 10-20% of the total change.
Oxygenation was reversible upon returning to air inhalation. The decrease in A[HbO,]
was also biphasic, and elevated oxyhemoglobin was still present after ten to twenty
minutes in many cases (Fig. 2a, 3a). The response was found to be highly consistent for
repeat carbogen interventions (Fig. 2), as emphasized both in terms of magnitude (Fig.

2b) and rate (Fig. 2c). The high reproducibility of results suggests that repeat

10
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interventions could be a valuable method for exploring the efficacy of interventions
designed to modulate tumor vascular oxygenation (e.g., vascular targeting agents).

Response to oxygen was much more rapid and fit well to a mono exponential
curve. For almost every tumor, the time to reach 80% of maximum elevation in A[HbO,]
was longer for carbogen and for the group of seven tumors the difference was
significant. Likewise, the decline in A[HbO;] was more rapid following exposure to
oxygen (Fig. 3d).. Further examination of Fig. 3a indicates that the maximum A[HbO,]
reached with either hyperoxic gas was similar, but required longer with carbogen. Given
that tumors had often not returned to baseline between hyperoxic gases, there could be
a question of pre-conditioning or residual oxygenation. The decline in A[HbO;] following
oxygen breathing was faster than following carbogen, prompting a comparison of the
increase on the rising part of carbogen (Fig. 3b) with the decrease following oxygen.
Both analyses showed a strong correlation demonstrating that the ultimate increase in
A[HbO,] is similar for either hyperoxic gas.

Intriguingly, the biphasic response (slow component) for carbogen was usually
eliminated, when the order of breathing hyperoxic gases was reversed (Fig. 4), yet the
ultimate response was equivalent (Fig. 4b), whichever gas was breathed first. These
data may be important in the context of the existing literature. Many investigators have
compared the relative merits of oxygen or carbogen for improving tumor oxygenation.
Overall carbogen is favored, and is being applied in clinical trials such as ARCON (3,
37). Our own previous investigations in the subcutaneous (pedicle) syngeneic breast
tumor model showed that each gas appeared equally effective at improving tumor

oxygenation (38). In practice oxygen might be favored since the response is more rapid,
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suggesting that an effective pre-irradiation breathing time could be shorter. Given the
reported respiratory distress induced by 5%CO,;, oxygen appears advantageous.
However, as a corollary, the elevated oxygenation is more persistent following carbogen
breathing, as also reported previously by Thews et al. (39). This could be important in
circumstances where hyperoxic gas may be administered prior to, but not during
irradiation. Indeed, others found evidence for persistence of improved oxygenation
following exposure to hyperbaric oxygen (40, 41).

While improvement of tumor oxygenation has been a primary goal of much
research and many clinical trials, an alternative paradigm is induction of hypoxia to
enhance the efficacy of hypoxia selective cytotoxins, e.g., tirapazamine (42). Our results
show that while either gas is being breathed (air or carbogen) IV infusion of HDZ
caused a rapid decline in A[HbO,] to a level below baseline (Figs. 4a , 5a). The overall
change in A[HbO;] due to HDZ infusion was similar, whether the rats were breathing air
or carbogen. The decline in A[HbO;] could be caused by decreased hemoglobin oxygen
saturation or reduced blood volume (viz. hematocrit). NIRS can provide measuremehts
of both} A[Hblotal and A[HbO2], simultaneously, as we have demonstrated in preliminary
data in the past (25). Our current data indicate substantial changes in A[HbJital
revealing reduced vascular volume in response t§ HDZ infusion coinciding with previous
reports for implanted tumors (43-45).

Insight into tumor vascular volume is also pertinent to the hyperoxic gases,
where there has been much debate concerning the relative vasoconstriction versus
vasodilatory effects of CO, (46). Here, the addition of CO, to air caused a significant

increase in A[HbO,], but results for A[Hbltal were less distinct. Likewise, the hyperoxic
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gases were accompanied by a variable response in A[Hb}ota. Our previous work in
phantoms has rigorously validated the stability of the instrument and veracity of the
algorithms used here (26), leading us to believe that our observations represent
physiological phenomena. The results for A[HbO.] with the hyperoxic gases are both
consistent and intuitive. The results for A[Hblota are as expected for HDZ. The
observations for response of A[Hblota to gas challenge indicate highly variable
behavior. However, it must be noted that changes in A[Hblital are relatively smaller than
A[HbOg], so that errors in calculation become more significant.

Others have suggested that the carbon dioxide component of carbogen is critical
to improving tumor oxygenation. Some tumors appear to respond only in the presence
of CO, (33), which has variously been described as a vasoconstrictor or vasodilator
(46). BOLD (or FLOOD - Flow and Oxygen Dependant contrast) MRI of G3H
prolactinomas, a highly vascularized and pérfused tumor type, showed some response
to the addition CO; to air and much greater response to carbogen (47). However,
oxygen produced a smaller effect than either hypercarbic ‘gas. Here, carbogen and
oxygen both induced significant increases in vascular hemoglobin oxygenation, which
were essentially equal, though changes accompanying carbogen were slower. To probe
the importance of the CO, component further, we‘tested the addition of 5% CO; to air.
In all five tumors of Group 4, the addition of 5% CO; produced a rapid increase in
A[HbO,] with a stable plateau. Further switch to carbogen produced the usual response,
which was five to six times greater than th_at due to the addition of CO, to air alone (Fig.

5b). The importance of the CO, component remains intriguing, since it generates rapid
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response, when added to air, but appears to be responsible for the biphasic response of
carbogen.

NIRS provides a global assessment, in contrast to BOLD MRI, which can provide
high resolution images (20, 47). Imaging can show heterogeneity in temporal and
spatial response, but results are often summarized using data reduction to show mean
values only. As such, an a priori global measurement can provide similar insight into
dynamic tumor physiology or drug pharmacodynamics, while being cheaper and easier
to implement. Our approach to NIRS uses transmission mode, which we believe probes
large and deep portions of the tumor, including the periphery on each side, as well as
the center. This is in contrast to the methodology used by most other investigators, who
apply reflectance mode (24, 28-30), which predominately indicates the behavior of the
peripheral vasculature. Indeed, results from Hull ef al. (24) are consistent with the fast
component that we attribute to the well-perfused regions of our tumors.

Likely, the response to interventions depends on tumor type, site of implantation,
and anesthetic. To place our current work in context, the 13762NF tumor type was
originally developed by Bogden et al. (35) and has been used in investigations of tumor
oxygenation in the past. In particular, Teicher et al. (48, 49) examined the effects of
various cytotoxic drugs and blood substifutes on pO; using the Eppendorf Histograph.
When tumors were implanted subcutaneously in the hind limb of Fisher rats there was
extensive base line hypoxia with HF 5 greater than 60% (48).

We have previously investigated dynamic oxygenation in the 13762 NF
adenocarcinoma using FREDOM (Fluorocarbon Relaxometry using Echo planar

imaging for Dynamic Oxygen Mapping) (38). It should be noted that this particular tumor
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develops extensive central necrosis and exhibits great heterogeneity in terms of tissue
appearance and tumor oxygenation. The baseline hypoxic faction, in our hands, ranged
from five to sixty percent with increasing hypoxic fraction and decreasing mean p0O, as
the tumors grew. Interestingly, the response to oxygen dr carbogen was very similar,
and on a voxel by voxel basis, the maximum pO, achieved was proportional to the initial
baseline pO,. It was also noteworthy that after forty minutes exposure to oxygen or
carbogen, the mean tumor pO, continued to rise and had not reached a plateau. Not
surprisingly, this indicates that the diffusion of oxygen into the tumor tissue is
considerably slower than changes in vascular oxygenation, and continues beyond the
time when the vascular oxygenation has reached a plateau. Investigations with oxygen
electrodes (26) or FOXY™ fiber optic probes (12) in these breast tumors showed
heterogeneity within the tumors with baseline pO. ranging from hypoxia to greater than
50 torr. These other techniques also indicated heterogeneity in response. Generally,
those regions that had an initially low pO, showed minimal response to oxygenation,
while those with higher pO, showed a rapid response. ll'hus, while we believe NIRS can
provide important insight into the pharmacodynamics of interventiqns on tumors, it must
be noted that responsive regions may mask the tumor heterogeneity, and in particular,
fail to show those regions that do not respond (26). This emphasizes the need for NIR
imaging, and indeed, we have obtained preliminary data in this tumor type using a
single transmitter and three receivers placed at various regions across the tumor,
indicating that while each region of the tumor responded to hyperoxic gas, the extent

and rate were different, showing the heterogeneity of tumor vasculature (50).

15




Mason 16

In conclusion, we believe that NIRS presents a new opportunity to examine
tumor vasculature rapidly, non-invasively, and cheaply. Ease of implementation will
allow rapid application to accessible tumors in patients. The inherent compatibility of
fiber optics technology and light with other modalities, such as electrodes (26) and MRI

(28), will facilitate multiparametric multimodality investigations in the future.
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Figure Legends

Figure 1

a) Relative absorption characteristics for oxy and deoxy-hemoglobin (based on

(1))

b) Schematic experimental setup for the NIR spectroscopy system. NIR light is
delivered and detected using two 3 mm-diameter fiber bundles placed in transmittance
geometry around the tumor. PMT represents a photomultiplier tube. 1/Q is an in-phase

and quadrature phase demodulator for retrieving amplitude and phase information.

Figure 2

a) Time course of tumor vascular A[HbO;] and A[Hb}eta With respect to altering inhaled
gas in the sequence carbogen-air-carbogen-air for a representative 13762NF breast

tumor in Group 1. Bi-exp_onential curve fitting to the dynamic responses of A[HbO,]

gave time constants 11=0.854 +0.008 min and 7t2=7.56 +0.09 min for the first
intervention, and T4 = 0.653 +0.004 min and 12 = 6.01 +0.08 min for the second

intervention with R>>0.94 and %2<1.2 in both cases.

b) Comparison of A[HbO;] produced by carbogen breathing for each tumor in Group 1

in the two cycles (R?>0.92).

c) Comparison of the ratios of the time constants; T4 and 1., for the two interventions.

There was strong linear correlation (R%>0.9).
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Figure 3
a. Time course of tumor vascular A[HbO,] for a representative 13762NF breast

tumor in Group 2. Curve fitting required a bi-exponential application for the carbogen

intervention, but mono exponential for oxygen. Two-exponential fitting for the carbogen
intervention yielded: 0.318{1-exp[-(t-19.656)/0.59]}+0.394{1-exp[-(t-19.656)/21]} with

R?>0.96, and mono exponential fitting for the oxygen intervention yielded: 0.484{1 -exp[-

(t-59.893)/0.397]} +0.138 with R>0.8. Variation in arterial oxygen saturation is also

shown.

b. Comparison' of maximal changes of A[HbO;], caused by carbogen and oxygen
interventions for tumors in Group 2. 0 Comparison of the rising parts for each
intervention; 0 Comparison of the rising part for carbogen versus the falling part for
oxygen. In both cases R?>0.8. \

c. Comparison of response times to each gas intervention. Here, the time to 80%
maximum response to each intervention is compared for carbogen versus oxygen: A
rising parts (onset of hyperoxia), O falling parts (return to normoxic gas breathing).
The line of unity shows that the time for carbogen.was almost always longer than for
oxygen, but the correlation between the times was very weak for either rising or
falling components (R?<0.25).

d. The average time for the 7 rats in Group 2 for signals to increase or decrease to

80% of the maximal A[HbO:] in the rising part or falling part for carbogen (open bars)

and oxygen interventions (shaded bars), respectively.
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Figure 4

a. Time course of tumor vascular A[HbO,] and A[HbJital for a representative tumor in

Group 3a.

b. Correlation between maximum A[HbO] achieved with carbogen inhalation versus

that with oxygen (R? >0.94): O carbogen prior to oxygen (Group 2), ~ oxygen prior to

carbogen (Group 3).

Figure 5

a Time course of tumor vascular A[HbO,] and A[Hblta for a representative tumor
in Group 4.

b Comparison of maximal changes of tumor vascular oxygen hemogiobin

concentration, A[HbQO;], caused by hypercarbic gas. Open bars from air to air+CO;,

hatched bars from air+CO,, to oxygen + CO; (carbogen).
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Tumor oxygen dynamics by simultaneous NIRS and F MRI in rats

ABSTRACT

Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI)
were used to investigate the correlation between tumour vascular oxygenation and tissue
oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas
breathing. NIRS directly detected global variations in the oxygenated haemoglobin
concentration (A[HbO,]) within tumours and oxygen tension (pO2) maps were achieved
using '°F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were
examined between rates and magnitudes of vascular (A[HbO]) and tissue (r0O2)
responses. Significant correlations were found between response to oxygen and carbogen
breathing using either modality. Comparison of results for the two methods showed a
correlation between the vascular perfusion rate ratio and the mean pO; values ‘(R2>0.7).
The initial rates of increase of A[Hbdz] and the slof)e of dynamic pO, response, d(pO,)/dt
of well oxygenated voxels in response to hyperoxic challenge were also correlated. These
results demonstrate the feasibility of simultaneous measurements using NIRS and MRI.
NIR provides a noninvasive, surrogate marker for the pO; response to intervention for
tumour tissue. As expected, the rate of pO, response to oxygen is primarily dependent

upon the well-perfused rather than poorly perfused vasculature.
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INTRODUCTION

Tumour oxygenation has been widely recognized as a pivotal factor in the efficacy of
radiotherapy (Hall, 1994), photodynamic vtherapy (Chapman et al, 1991) and some
cheniotherapies (Brown, 1999) and patient stratification could be clinically important
(Hockel et al, 1996; Fyles et al, 1998; Welch et al, 2003). It has been hoped that
modulation of tumour oxygenation could be applied to enhance therapeutic efficacy. An
attractive intervention is breathing hyperoxic gas, and indeed, several clinical trials have
examined the efficacy of normobaric or hyperbaric oxygen, to improve therapeutic
outcome, but often with marginal success (Overgaard and Horsman, 1996). It has been
suggested that outcome might have been improved, if responsive tumours could have
been identified a priori. Accordingly, accurate evaluation of tumour oxygenation in
response to interventions at various stages of growth should provide a better
understanding of tumour response to therapy, potentially allowing therapy to be tailored
to individual characferistics.

Given the importance ofﬁtﬁmour oxygenation, many techniques have been developed
based on microelectrodes, optical reflectance, EPR, MRI and nuclear medicine
approaches, as reviewed previously (Mason et al, 2002; Zhao et al, 2004). While each
approach has unique strengths, some are highly invasive. Near-infrared spectroscopy
(NIRS) has been developed in recent years as a promising non-invasive technique to
quantify the concentration of tissue chromophores, such as oxygenated and deoxygenated
haemoglobin, water and lipid (Sevick et al, 1991; Liu et al, 2000). Due to the deep

penetration depth and biochemical specificity of NIRS, it has been widely applied for |
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quantitative measurements of cerebral oxygenation (Delpy and Cope, 1997; Yodh and
Boas, 2003) and blood oxygenation in muscles in vivo (Homma et al, 1996). Recently,
NIRS has been also used to monitor tumour vascular oxygenation with respect to
interventions (Hull et al, 1999; van der Sanden et al, 1999; Liu et al, 2000; Gu et al,
2003; Wang et al, 2004). However, NIRS currently lacks spatial resolution, and thus, the
utility of global measurements requires validation, given the well-documented
‘heterogeneity of tumour pO,. We have previously investigated correlates between pO,
assessed by electrodes (Kim ef al, 2003a; Mason et al, 2003) or fiber-optic probes (Gu et
al, 2003) and NIRS. On occasion, there was a good correlation between global vascular
oxygenation assessed and local pO, at individual locations, but often, disparate behavior
was observed. Sequential MRI and NIRS suggested a better relationship based on
average pO; from multiple locations (Kim et al, 2003a). We have now implemented
simultaneous NIRS and "’F MRI to examine the relationships furtﬁer. Since NIRS is
entirely non-invasive it would provide an attractive surrogate for monitoring tumour
oxygenation, and hence, we seek correlations with absolute pO; measurements observed

simultaneously by MRI.

MATERIALS AND METHODS
Animal preparation and experimental setup

Mammary adenocarcinomas 13762NF were implanted in skin pedicles (Hahn ef al.,
1993) on the foreback of ten adult female Fisher 344 rats. When the tumours reached ~1

cm in diameter, the rats were anesthetized with ketamine hydrochloride i.p. (0.15 ml, 100
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mg/ml, Aveco, Fort Dodge, IA) and were maintained under general gaseous anesthesia
(air and 1% isoflurane; Baxter International Inc, Deerfield, IL). Tumour hair was
trimmed to give good optical contact for NIR light transmission. Hexafluorobenzene
(HFB, 50 pl, 99.9%, Lancaster Co., Pelham, NH) was administered along two or three
tracks in central and peripheral regions of the tumours in a single plane (transverse to the
rat’s tumour, and in the region of NIR photon pathway) using a Hamilton syringe with a
32 G needle. The needle was inserted manually to penetrate across the tumour and was
withdrawn ~1 mm to reduce pressure and 3~4 pl of HFB was deposited. The needle was
then repeatedly withdrawn 1~2 mm and further HFB deposited at each point, as described
in detail previously (Zhao et al, 2004).

The tumour was placed inside a size-matched Helmholtz coil, specially designed for
the simultaneous MRI-NIRS study. The tumour was inserted between the two loops of
the Helmholtz coil and two NIRS probes were introduced through the ends of the coil
along the coil axis (Fig. 1). The rats were placed in the magnet on their side, and body
temperature was maintained using a warm water blanket. Seven rats were subjected to
respiratory challenge in the sequence air-oxygen-air-carbogen-air. One rat breathed air-
carbogen-air-oxygen-air, one rat breathed air-carbogen-air and one rat breathed air-

oxygen-air.

NIRS for measuring A[HbO,]
A homodyne frequency-domain system (NIM, Philadelphia, PA) was used to monitor

the global change of deoxy- and oxy-haemoglobin concentration (A[HbO;]) in the




Tumor oxygen dynamics by simultaneous NIRS and DF MRI in rats

tumour, as described previously (Yang et al, 1997), though with minor modifications to
ensure MR compatibility (Fig. 1). Briefly, light from 785 nm and 758 nm laser diodes
(modulated at 140 MHz) was coupled into a bifurcated fiber bundle with a length of 7 m.
The long fiber bundle ensured the separation of the NIRS hardware from the magnet.
The probe tips (made of metal-free material for MR compatibility) were placed in good
contact on opposite surfaces of the tumour. After being absorbed and scattered in the
tumour tissue, the transmitted light was collected on the opposite side of the tumour by
another fiber bundle (of same length) and amplified by a photomultiplier tube (PMT). An
In-phase and Quadrature (IQ) demodulator chip was used to demodulate the amplitude-
modulated signal from the PMT.

According to the modified Beer-Lambert law, changes of oxy- and deoxy-
haemoglobin concentration, A[HbOzj and A[Hb], respectively, can be derived from the

measured amplitudes at the two wavelengths (758 nm and 785 nm) (Kim et al, 2003a)

~10.63 1og(%)758 +14.97 log(—‘ji)785

A[HBO,]= SPF d — @

A A
8.95log(—2)"® - 6.73 log(—2)"™®
g( y ) g( y )

A[Hb] = : SPF 4 : (2)

where A} is the baseline amplitude, 4, is the transient amplitude during measurement, and
d is the direct source-detector separation. DPF (differential path-length factor) is a tissue-
dependent parameter and defined as the ratio between the optical path length and the
physical separation between the source and detector. Since DPF is a variable, depending

on tissue types and wavelengths, it is currently difficult to quantify DPF for tumours.
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However, since our study focuses on dynamic changes of [HbO,], we may include DPF
in the unit of [HbO,] and still obtain characteristic features of tumour oxygen dynamics

(Liu et al, 2000). Because of un-quantitative nature of tumour DPF values, we will use

arbitrary units (AU) to label all of the [HbO,] data figures in this paper.

Mathematical model for blood oxygenation dynamics of tumours

We previously derived a simple mathematical model (Liu et al, 2000) to examine
vascular dynamics relating the time constants of the biphasic features of A[HbO,] to
tumour blood perfusion rates by analogy to methods originally developed by Kety in the
1950’s to measure regional cerebral blood flow (rCBF) with diffusible radiotracers (Kety,

1951). Our mathematical model is expressed as

\ -f -
ALHBO, (O] = yH[l-¢ " 1= Al —¢ " ] 3)

where A[HbO,] corresponds to the changes in oxy-haemoglobin concentration from
tumour vasculature measured by the NIRS, H) is the arterial oxygenation input, f is the
blood perfusion rate, v is the ratio of A[HbO,] in the vascﬁlar bed to that in the veins and
defined as vascular coefficient of the tumour.

Assuming that the tumour has two distinct perfusion regions (well-perfused and
poorly perfused region), it is reasonable to define two different blood perfusion rates (£,
J2) with two different vascular coefficients (y1, y2) in the model. Consequently, eq. (3) can

be modified to a summation of two exponential expressions, representing two regions, as

- fit ~ ~1 —1

ALHBO, ()] =y H[1—e " 1+ y,H [l—e " 1= Al[l—e’_']+A2[1——e;;], 4
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where f; and y; are the blood perfusion rate and the vasculature coefficient, respectively,
in the well-perfused region, and f> and y, are those representing the poorly perfused
region. The two amplitudes are defined as A;=y;Hy and A,= y,Hy, while the two time
constants are defined as 7y = y;/f; and 7 = Y»/fo. Since Ai, A; and the two time constants
can be determined by curve-fitting eq. (4) to the dynamic NIRS measurements, we arrive

at the ratios for two vascular coefficients and two blood perfusion rates, as follows:

7 A _[1_= A /7 )

ek
v, A f A4z,
where A,/77 and A,/ 7; reflect the perfusion rates of A[HbO;] in the well and poorly

perfused regions, respectively, and fi/f; is the perfusion rate ratio of the well-perfused to

poorly-perfused regions.

FREDOM for measuring pO;

MRI experiments were performed using a Varian Inova 4.7 T horizontal bore system
equipped with actively shielded gradients. Shimming was performed on the tumour tissue
water signal to reduce the line-width to less than 100 Hz. 'H MRI (200.1 MHz) T1-
weighted reference images were acquired with TR/TE of 150/10 ms and 40x40 mm? field
of view. Following 'H MRI, corresponding "°F MR images (188.3 MHz) were obtained
to show the distribution of HFB in the tumour. The FREDOM (Fluorocarbon
Relaxometry by Echo-planar imaging for Dynamic Oxygen Mapping) approach was used
to measure pO,, as described in detail previously (Hunjan et al, 2001). T1 maps were

computed on a voxel-by-voxel basis using nonlinear least-squares data fitting by the
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Gauss-Newton method. We applied a threshold to the raw T1 data in order to remove
random noise, i.e., voxels with T1 error >3.6 sec or T1 error/T1 >50% were disregarded.
Maps of pO;, values were obtained from the T1 maps using the equation, pO, = (1/T1-
0.0835)/0.001876 (Hunjan et al, 2001).

Three baseline pO, data sets were acquired over 24 mins for all tumours, while the
rats breathed air, after which the rats were repeatedly exposed to oxygen or carbogen
(95% Oz and 5% CO,) interventions. Five pO, maps were obtained during each
subsequent gas switch period. Typically, for a five gas-intervention sequence (e.g., air-
oxygen-air-carbogen-air), a total of 23 pO, maps were obtained over a period of 3 h. For
temporal analysis, voxels were selected as only those which provided consistently
reliable data for all 23 measurements over the time course with a range of 5 to 44 for the
ten tumours. The slope of dynamic pO, changes (rate) was defined as d(pO,)/dt and
d(pO;’)/dt in response to increasing or decreasing inhaled FO, (Fraction of O),
respectively, while pO; is the mean value of pO2 in all voxels in order to obtain global
tumour pO;, readings for comparison with global A|[HbO;] readings.

Statistical Analysis

Linear regression analysis was used to calculate the correlation between the NIRS-
derived tumour hemodynamic parameters (i.e., A[HbOs), Ai/7, A2/m, filfz) and the
FREDOM-determined tumour parameters (i.e., pO;, d(pO,)/dt, d(pO;’)/dt). Data are
presented as mean * standard deviation (SD) and paired Student-t tests compared the

effects of oxygen and carbogen on A[HbO,] and pO,.
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RESULTS
Dynamic response of A[HbO;] measured by NIRS

Figure 2 shows a typical temporal profile of A[HbO;] in response to oxygen and
carbogen interventions for a representative 13762NF breast tumour (No.1, 1.6 cm’),
displaying apparent biphasic response to both interventions. Both single (eq. 3) and
double-exponential (eq. 4) curve fitting were tested for the carbogen intervention (Fig.
3A). The maximal A[HbO,] achieved with oxygen challenge was compared with that of
carbogen, and revealed no significant difference between oxygen and carbogen
~intervention (p>0.3); indeed, there was a strong correlation between the maximal
A[HbO;] values with these two interventions (R2>0.75, Fig. 3B), consistent with our
previous observations (Gu et al, 2003). No correlation was found between the perfusion
rate ratio (fi/f;) and tumour size (R’=0.16, Fig. 3C). Vascular oxygen dynamics in
response to interventions are provided for individual tumours as supplementary material

in Table 2.

pO: measurements by FREDOM

Overlay of °F and 'H MR images showed that HFB was distributed in both central
and peripheral regions of tumour and individual pO, values ranged from hypoxia (< 1
torr) to 35 torr under baseline conditions (Fig. 4). Mean baseline pO, over all voxels
ranged from hypoxia (< 5 torr) to 27 torr with a hypoxic fraction (HFs; fractional voxels
that are less than 5 torr) ranging form 0 to 100% (mean 36%) and summarized in Table 1.

A strong correlation was found between mean baseline pO, and HFs (R>>0.85, Fig. 5A).

10
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Administration of oxygen or carbogen produced significant increases in tumour pO,, as
shown in the pO, maps, graphs and Table (Figs. 2 and 4). pO, response to respiratory
challenge for a representative tumour, measured simultaneously by FREDOM and NIRS,
is shown in Fig 2. Baseline measurements (breathing air) were generally stable, and
altering the inhaled gas to oxygen or carbogen induced rapid and significant changes in
both pO; and A[HbO,} (p<0.001). Upon return to air (baseline), AlHbO,] dropped quickly
and significantly within 16 mins, and then more slowly, for the next 24 mins, whereas the
pO; decrease was more gradual. Altering the inhaled gas to carbogen also produced a
rapid increase in both pO, and A[HbO,]. Upon return to air breathing from carbogen both
A[HbO;] and pO, showed a similar trend to that following oxygen. As expected, all ten
tumours showed a significant increase in pO, and decrease in hypoxi.c fraction (HF) in
response to oxygen or carbogen inhalation. In this study, baseline pO, was not a good
indicator of the magnitude of response (ApO;) to hyperoxic gas breathing (R?<0.5), but
the elevated pO, achieved with oxygen was a function of ihe magnitude of the pO;
response (ApO»; Fig. 5B, R>>0.94). Similarly, pO: achieved with carbogen was related to
ApO, (R*>0.92). The magnitude of response to either hyperoxic gas was correlated
(R*>>0.79), as also the maximum pO, achieved with either gas (R%>0.83). The rate of
response to oxygen challenge, d(pO,)/dt was significantly faster than the return to
baseline, d(pO,’)/dt for oxygen intervention (p<0.02), but no difference was observed for
carbogen (p>0.1, Fig.6). The mean pO; values with carbogen breathing were significantly
higher than oxygen (p<0.008), and the tumour hypoxic fraction was generally eliminated

during carbogen breathing (n = 7 of 9 tumours, Table 1).

11
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The relationship between pO, and A[HbO;] with respect to hyperoxic gas

Taken as a group of 10 tumours, there was no apparent relationship between the
magnitude of the change in tumour vascular oxygenation (A[HbO,] and pO, (R><0.1).
However, if tumours were divided into two sub-populations, then two separate
correlations were found each with similar slope (Fig. 7A), with the average of maximum
A[HbO,] equal to 0.18 £ 0.08 of in group 1 and 0.39%0.06 in group 2. There was also a
correlation (R>>0.7) between the perfusion rate ratio, fi/%, derived from fitting the
A[HbO;] curve and the mean pO, values of all voxels achieved with hyperoxic gas
intervention (Fig.7B). Assessment of fi/f; is predicated on biphasic behavior with respect
to interventions, which was observed in most cases (13 of 16 measurements). There was
also a positive correlation between A;/7 (the fast component of biphasic A[HbO;]) and
the d(pO,)/dt of well oxygenated voxels (i.e., those with pO, values > 10 torr under
oxygen or carbogen intervention) (R>0.5, Fig. 8A). However, no correlation was found
between d(pO;)/dt and A,/ 7 (the slow component, Fig. 8B).
DISCUSSION

In the present study, global average A[HbO,] was measured by NIRS, and pO, maps
were obtained simultaneously by ’F MRI. We used transmission mode NIRS in order to
interrogate deep tumour tissue. Utilizing our previously developed mathematical model
(Liu et al, 2000), multiple hemo-dynamic parameters were derived for A[HbO,] (41/7,
Ax/n and fi/f;) to be compared with pO,. Our results demonstrate that oxygenation

parameters measured from both techniques show significant and consistent elevation in

12
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tumour oxygenation during fhe hyperoxic gas interventions. As reported previously, the
magnitude pf the vascular response was similar with both hyperoxic gases (Gu et al,
2003). As expected, A[HbO,] increased much faster than pO, in all ten tumours,
indicating that change in tumour vascular oxygenation precedes tumour tissue
oxygenation. This observation is consistent with our previous studies in this tumour type
measured simultaneously by NIRS and fiber-optic probes (Gu et al, 2003), as well in the
Dunning prostate R3327-AT1 tumours measured sequentially by NIRS and “F MRI
(Kim et al, 2003a).

We havé previously demonstrated the application of FREDOM to monitor tumour
oxygen dyhamics in diverse rat prostate tumours (Zhao et al, 2001; Zhao et al, 2002),
human tumour xenografts (Mason et al, 2002) and a few breast tumours (Song ef al,
2002). Here, mean baseline was pO;=12 % 10 torr for the 10 tumours, which is lower than
reported previously (Song et al, 2002), but entirely consistent with the newer anesthetic
protocol (air or 21% oxygen, as opposed to 33% O, previously). There was a strong
correlation between baseline pO, and hypoxic fraction (Fig. 5C), as we have previously
found using Dunning prostate R3327-HI tumours (Zhao et al, 2001). The pO, achieved
with carbogen in this study was significantly higher than with oxygen and carbogen
appeared to be more effective at eliminating the hypoxic fraction. However, carbogen
was generally applied second in our experiment protocols, and it is highly likely that the
initial oxygen primed the tumour. Indeed, while oxyhaemoglobin generally returned to
baseline during the air breathing episode between hyperoxic gases, it is clear that pO,

remained elevated (Fig. 2). Both ApO, and the maximum pO, achieved with either gas

13
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were closely correlated. Similar behavior was reported previously based on
measurements using fiber optic probes (Gu et al, 2003). However, in this study baseline
pO: did not provide a good indication of response to hyperoxic gas (ApO; or pOzmax).

The rate of pO; response to either gas was similar (Fig. 6), but decrease upon return
to air was significantly faster in the case of oxygen, but not carbogen. Considering the
relationships between pO, and A[HbO,] there was a significant correlation between fi/f;
and mean pO; values achieved with hyperoxic gas intervention (F ig. 7B). Furthermore,
there was a significant correlation between 4,/7; but not 4>/, and d(pO,)/dt, provided
that they were selected from well oxygenated or responsive voxels (Fig. 8). We believe
these results provide fuﬁher valuable insight into tumour physiology and the'ability to
conduct simultaneous optical and NMR measurements. A goal had been to develop a
cheap, simple, fast surrogate measurement of pO2 based on NIRS of the oxygenation
status of endogenous haemoglobin. It seems that no straightforward correlation exists
(Fig. 7A), but there is a relationship between pO, and the well perfused compartments
(Fig. 7B and 8A). Separation of the tumours into two groups does suggest a relationship
between ApO, and A[HbO,], with a tendency for the largest induced pO, changes to
occur in those tumours with larger A[HbO;] changes, but here were no obvious
differences between these tumours to allow a priori stratification (Fig. 7A).

A major coﬁcem is tumour heterogeneity, as recognized throughout the literature and
shown here by '°F MRI (Fig. 4). Indeed, we have obtained some preliminary data using a
single NIR source and three detectors placed on various regions across a tumour (Kim et

al, 2003b). The results show that each region of the tumour responded differently to

14




Tumor oxygen dynamics by simultaneous NIRS and °F MRI in rats

hyperoxic gas, in terms of the extent and rate, indicating the heterogeneity of tumour
vasculature. Spatial discrimination will be even more critical if such studies are
transferred to human breast cancer, where the tumour is surrounded by normal tissue
(Brooksby et al, 2003). Nevertheless, we believe this hemodynamic model and
correl.ation between tumour vascular oxygenation and pO; provides valuable insight into
the tumour compartment of such a mixed system and explores dynamic signatures of
breast tumours, which can, in turn, enhance/assist human breast cancer diagnosis and
prognosis. ~

In summary, by studying tumour vascular oxygenation concomitantly with changes in
tumour oxygen tension, we found several significant correlations between rates and
magnitudes of vascular and tissue responses. This study also demonstrates the feasibility
of conducting simultaneous NIRS and MRI oximetry. We believe the correlation of

tumour vascular oxygenation and tumour tissue pO, can provide valuable insights into

tumour pathophysiology and response to interventions.
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Figure 1
Schematic of experimental setup. Z is along the bore of the magnet, and X along the axis

of the rf coil.

Figure 2
Temporal profiles of A[HbO,] (curve) and pO, (@) in response to respiratory challenge
for a representative 13762NF rat breast tumour (No. 1, 1.6 cm®), measured

simultaneously by NIRS and FREDOM. pO; is the average value of all voxels.

Figure 3

A) Dynamic responses of A[HbO;] to carbogen in tumour no 1. Single exponential
curve fitting yielded A[bez] = 0.22{1 - exp[-(t-106.8)/2.5]} (R?=0.64), and
double exponential fitting resulted in A[HbO;] = 0.15{1 — exp[-(t-106.8)/0.58]}+
0.13{1 — exp[-(t-106.8)/23.2]} (R*=0.88).

B) Relationship of maximum A[HbO;] in breast tumours in response to switching
from air to oxygen and to carbogen (R>>0.75).

C) Variation of the perfusion rate ratio (fi/f,. well-perfused to poorly perfused

regions) with tumour size (R’=0.16) for oxygen (4) or carbogen intervention (o).

17
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Figure 4

Representative pO, maps (1.25 mm resolution) obtained using FREDOM with the rats A)
breathing air, B) breathing 100% O, (fifth map after switching from the air), C) breathing
carbogen (95% O, + 5% COy) (ﬁfth map after switching from the air). Large T1 error

represents T1 error > 3.6 sec or T1 error/T1 >50%.

Figure 5

A) Correlation between baseline /p02 and hypoxic fraction (HFs) measured using
FREDOM (R*>>0.85).

B) Correlation between maximum pO, achieved while breathing oxygen and the change

in pO, (R>>0.94).

Figure 6

Mean d(pO,)/dt (open) and d(pO,’)/dt (shaded) with error bars demonstrating the
standard deviation of the mean for eight tumours with both interventions, when gas was
switched from air to a hyperoxic gas and back to éir, respectively. pO; is the mean value
of all voxels appeared in the five maps during oxygen or carbogen intervention. The rates

showed a significant difference with oxygen (p<0.02), but not with carbogen (p>0.1).

Figure 7
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A) Correlation between maximum A[HbO;] and change in pO, with respect to hyperoxic
gas intervention for two groups of tumours (®) (group 1: #1, 2, 6, 7, 8, 9, 10; R* > 0.51)
and (A) (group 2: #3, 4, 5; R*>0.82).

B) Correlation between pO, and perfusion rate ratio (fi/;) for tumours with biphasic
response to intervention (R*>0.7). pO, is the mean value for the final three pO, maps
under hyperoxic intervention, selected from all voxels appearing in the final three pO,

maps during oxygen () or carbogen (o) intervention.

Figure 8

A) d(pO,)/dt vs A)/7 determined from A[HbO;] for tumours with biphasic response to
interventions, showing a positive correlation (R*>>0.5). pO, are obtained from the mean
value of all well oxygenated voxels appearing in the five pO, maps during oxygen (@) or
carbogen (o) intervention (i.e., the maximum pO; > 10 torr under oxygen or carbogen
intervention)

B) d(pOy)/dt vs A»/ 7 from A[HbO,] for tumours with biphasic response to interventions,

showing lack of correlation.
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Supplmentray material

Tumour Double exponential fitting

No. | intervention Ay (AU) A, (AU) 7 (min) 7, (min) R
2 oxygen 0.11£0.002 | 0.12%0.002 0.4910.02 6.6X0.2 0.94
carbogen 0.15+0.001 { 0.13%0.002 0.58+0.01 23.2%1.1 0.94

2 oxygen 0.031+0.002 | 0.11%0.005 0.46+0.18 256+29 | 091
carbogen - -mmn - - -

a3 oxygen 0.15+£0.001 | 0.38+0.003 0.31£0.02 2011039 | 098
carbogen 0.23 £ 0.005 0.2+ 0.004 1.2+ 0.04 10.8+0.45 | 095

o oxygen --- — o — o
carbogen 0.16 + 0.002 231027 0.2910.02 155.8+21 | 0.97

a5 oxygen 0.121+0.002 | 0.23+0.002 0.55+0.03 11.6+0.27 | 094
carbogen - - — == —

26 oxygen 0.06 + 0.001 0.26 & 0.005 0.13£0.01 31.2+ 1.1 0.96
carbogen 0.031+0.001 | 0.08%0.001 0.0410.02 13.9+06 | 0.78

a7 oXygen - o — — -
carbogen o — o - o

bg oxygen 0.1110.002 0.2+ 0.001 0.2410.02 7.1x0.1 0.96
carbogen 0.2 0.002 0.12+0.001 049+ 0.01 9.11+0.2 0.95

9 carbogen | 0.01%0.0004 | 0.02+0.0004 | 0.14+0.02 39%+0.12 | 0.64
10 oxygen 0.05+0.002 | 0.03+0.002 | 046+0.05 56+056 | 0.68
l\i/_IeSaIr)n - 0.1110.068 0.321+0.59 042+03 - | 2491402 | -—-

Table 2: Summary of vascular oxygen dynamics for the experimental tumours. Two
amplitudes (4;, 42) and two time constants (73, ) are determined by curve-fitting the
dynamic NIRS measurements using a double-exponential expression. 9 out of 10 tumours
were observed to have double-exponential features with either oxygen or carbogen
intervention. A; is significantly smaller than 4, with oxygen (p<0.01), but no significant
differences in carbogen (p>0.19).

7 is significantly smaller than 7 in oxygen (p<0.006),

whereas no significant differences in carbogen (p>0.1).

% air>0; air > carbogen—>air;

b air > carbogen => air =2 O, > air;
°:air > carbogen - air;

% air > oxygen > air
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ABSTRACT

This study develops a mathematical model for calculating tumor oxygen consumption rate
and investigates the correlation between the tumor oxygen consumption rate and tumor volume.
After developing the model, we used near-infrared spectroscopy (NIRS) to measure changes of
oxygenated hemoglobin concentration (A[HbO;]) before and after potassium chloride (KCI)
induced cardiac arrest. The measurements were taken from five female adult Fisher 344 rats
bearing mammary adenocarcinomas 13762NF, while the anesthetized rats breathed air. After 5-
10 minutes of baseline measurement of NIRS, overdose of KCI was administered through i.v. tail
injection. The NIRS results from tumor measurements showed significant drop in tumor vascular
oxygenation right after KCl induced cardiac arrest. The tumor oxygen consumption rate was
calculated by fitting the developed model with the measured A[HbO,] data, and a relationship
between tumor oxygen cdhsumption rate and tumor volume was analyzed using linear
regression. It was also found that there was a strong negative linear relationship between the
mean tumor oxygen consumption rate and tumor volume, indicating that the larger a tumor, the
smaller the mean oxygen consumption rate. This study demonstrates that the NIRS can provide

an efficient, real-time, non-invasive approach to quantify tumor oxygen consumption rate.

Key Words: Breast tumor, Tumor oxygen consumption rate, NIR Spectroscopy, Tumor

Vascular Oxygenation




1. Introduction

For the past decade, substantial efforts have been made in developing techniques for

measuring skeletal muscle oxygen consumption (¥0, ) during rest and exercise with and without

vascular occlusion, and various mathematical models for computing 7O, have been

proposed.l’2’3’4 However, little has been done in determining tumor oxygen consumption in
either human subjects or animal models. So far, only limited information is available about
tumor oxygen consumption and its relationship to tumor kinetic parameters and tumor volume.
Some studies indicated that oxygen consumption rates of breast tumors in vivo are intermediate
between normal tissues with low metabolic rates and normal tissues with quite high activities.’
Steen et al. ® found out that the oxygen consumption rate of brain was higher than that of 9L
gliosarcoma, by comparing pre-sacrifice and post-sacrifice sO, (hemoglobin oxygen saturation)
values of rat brain and 9L tumors. No further details were provided on how the tumor oxygen
consumption rate could be computed, and whether it was related to other tumor kinetic
parameters and tumor volume.

To answer these important questions, we developed a simple mathematical model based
on Fick’s Law of diffusion to describe hemokinetics of tumor vascular oxygenated hemoglobin
concentration, [HbO;], following potassium chloride (KCl) induced cardiac arrest (total global
ischemia). This allowed for the description of changes in tumor oxyhemoglobin concentration,
A[HbO;], as a function of time. The values of A[HbO;] were measured using near infrared
spectroscopy (NIRS), in common with our previous work”®. The mathematical model was
developed in such a way that the measured A[HbO,] is directly associated with the tumor oxygen
consumption rate, which can be further correlated with the tumor volume. In this paper, we are

going to report 1) the development of mathematical model for computing tumor oxygen




consumption rate and 2) the investigation of relationship between tumor oxygen consumption

rate and tumor volume.

2. Materials and Methods
2.1 Calculations of Tumor [HbO;] and [Hb]ta

The principle of tissue NIRS is that concentrations of oxygenated hemoglobin and
deoxygenate hemoglobin, [HbO,] and [Hb], fespectively, are the only significant absorbing
materials in tissue within the NIR range (700-900 nm). When the measured sample, such as
tumor, has a mixture of oxygenated and deoxygenated hemoglobiﬁ, the modified Beer-Lambert

law can be further written as>%!"

OD* = {&" [Hb] + émoz" [HDO]} |, M
where Ob" is the optical density or absorbance at wavelength A, e, and sHbozl are the
extinction coefficients at wavelength A for molar concentrations of [Hb] and [HbO,],
respectively, and / the optical path length. By employing two wavelengths at A; and A, both of
[HbO,] and [Hb] can be determined by measuring the light absorbance at the two specific

wavelengths, provided that the values for smf‘ and sHbogk are known, as expressed below:

A pYPy)
[Hb02]=+gHb ZODM—gHb 0D2 (2)
) 7 p) 3k
l(gHb 2emo2" — € empo2 2)
A2 ArA M AnA
[ Hb ] = —£Hb02 20D™ —epppp" OD2 3)

A2

p) 7 7\
Rem™ emo2"? —em 2 €mpo2 1)

It follows that changes in [Hb] and [HbO,] can be consequently given as:

£xp"2 AODM — &M AOD™2 @

P 7 7 et
l(gHb 2emo2” — € €mpo2 2)

A[HbBO, | =




02’ 2A0DM — 105" AOD"2 5)

A[Hb] =
! ! 2 )’
l(be e 102" — & 2 € o2 )

where AOD represents a change in optical density at the specific wavelength, A, and equals to
=log(Ap/A1). Ap and At correspond to light intensities measured under the baseline and

transient conditions.

Equations (4) and (5) seem straight forward mathematically and have been used for
several decades by biochemists to quantify A[Hb] and A[HbO,] in laboratory spectrophotometric
measurements. However, close attention needs to be paid to the values of € for in vivo
hemoglobin determination since € values were often expressed on a heme basis, whereas a
hemoglobin molecule/complex has four hemes. Therefore, there exists a factor of 4 between the
commonly published € values and the € values to be used in equations (4) and (5) for in vivo
measurements'>'>, Furthermore, the optical pathlength, 1, should be proportional to the source
and detection separation, d, with a differential pathlength factor (DPF)M’15 , i.e., [=d*DFF. We
previously utilized the € values given by W. G. Zijlstra16, which were expressed on a heme basis,
and assumed that the DPF values were approximately constant at the two selected NIR
wavelengths. Consequently, we have obtained, from egs. (4) and (5), the following specific

equations for A;=758 nm and A,=785 nm, after system calibration using liquid phantoms®:

A
~10.63-log (%) 758 414.97- log(i—B)785
A[HbO,] = T y r ., (6)

A A
8.95. log(—A:B—) 738 _6.73-log(=2) 785

A[Hb] = L Ar ™

A[Hb],,,, = A[Hb] + A[HbO]




A A
~1.68-log(—2)7%8 +8.24 . Jog(—B) 785
_ At At ®
d 2

Notice that for simplicity, the factor of 4 to account for the 4 hemes of € and the DPF values are
not included in the equations since little has been reported for tumor DPF. Our focus for this
study is on relative changes of A[HbO;] between the baseline conditions and after the KCI
injection. Both of these factors are nearly constants and do not affect dynamic features of tumor
A[HbO;] calculations. Because of the existence of such constant factors, we used arbitrary units
in this study for the units of A[Hb] and A[HbO;}. The error estimation due to the assumption of

constant DPF has been given in Ref. 7.

2.2 One-Channel NIRS System

A dual-wavelength (at 758 nm and 785 nm), one-channel NIR system (NIM, Inc.,
Philadelphia, PA) was utilized for the animal experiment, as shown in Figure 1. A radio-
frequency (rf) source was used to modulate the light intensities of two laser diodes at 140 MHz
through a time-sharing system. After the light passed through a bifurcated fiber optic probe, it
was transmitted through the tumor tissue and then collected by a second fiber bundle. Tﬁe light
was then demodulated by an In-phase and Quadrature-phase chip (I&Q chip), amplified by a
photo multiplier tube (PMT), and filtered by a lowpass (LP) filter for passing only the DC
components. The signals were digitized by an analog-to-digital converter (ADC) and stored in a
laptop computer. The measured DC signals at the I and Q branches at the measured wavelengths,
Ipc(A) and Opc(4), lead to the quantification of optical amplitudes, A(A), and phase, 8(A), that

passed through the tumor tissues' :

AR = I3 + O(AY2 ©)




_ O e
o) = arctan(———-j(l) > ), (10)

where A represents the respective wavelengths utilized in the NIR system. Then, changes in light
intensity through the tumor caused by a particular intervention were used to compute changes in

tumor vascular [HbO;] and [Hb], as described previously in Section 2.1. In this study, the

measured values of (L) were not particularly used for data analysis because of unclearness of

direct association between 0(A) and physiological parameters.

2.3 Animal Tumor Model and its Response to KCI Injection

Murine mammary adenocarcinomas 13762NF were implanted in skin pedicles on the
forebacks of adult female Fischer 344 rats (~ 250 g, n=5), as described in details previously.'®
To identify them, each tumor was assigned a unique code and was housed separately during the
course of study. The tumor model had distinct therapeutic sensitivity and metastatic
characteristics. Once the tumors reached ~1 ¢cm diameter (~ 0.5 cm®), corresponding to a typical
lower limit of tumor detected in patients, experiments were initiated. We chose to use relatively
large tumors in order to ensure that the NIRS interrogated only the tumor tissue rather than the
surrounding normal skin tissue. The rats were anesthetized with 200 pl ketamine hydrochloride
i.p. (100 mg/ml; Aveco, Fort Dodge, IA) and were maintained under general gaseous anesthesia
using a small animal anesthesia unit with air (1.0 I/min) and 1.0% isoflurane (Ohmeda PPD Inc.,
Fort Dodge, IA). Prior to experiments, tumor hair was cut with a pair of surgical scissors to
improve the NIR light transmission. Tumor's three orthogonal diameters were measured with a
caliper for estimating tumor volume. The rats were placed on their sides in an animal bed and
stabilized using tape to reduce motion artifacts caused by rats' breathing movements. The body

temperature was maintained at about 37 °C by a warm water blanket connected a water pump (K-




MOD 100, Baxter Healthcare Co., Deerfield, IL). A fiber optic pulse oximeter (Nonin Medical,
Inc., Plymouth, MN) was placed on the hind foot to monitor arterial hemoglobin saturation
(5202) and heart rate (HR), and a thermocouple (Cole-Parmer Instrument Co., Vernon Hills, IL)
was inserted rectally to monitor core temperature. (Figure 1).

Following a baseline A[HbO,] measurement (5 ~ 10 min), while the rats were breathing
air, the rats were given an overdose of KClI (1 g/kg (Sigma) in saline) by i.v. tail injection. Care
was taken so as not to disturb the position of either the light source or the detector. Changes in
tumor vascular [HbO;] and total hemoglobin concentration ([Hb}ia) were continuously

monitored during and after cardiac arrest for about 40 minutes by NIRS.

2.4 Data Analysis
For each tumor, the raw data were filtered and baseline corrected. The processed data

were then fitted to the mathematical model to be described below to determine the kinetic

parameters of the dynamic response. Tumor oxygen consumption rate YO, and mean tumor

oxygen consumption rate VOZ were computed over 5 rat tumors, respectively, by fitting the

mathematical model with the measured A[HbO,]. Relationships between those parameters and

tumor volume were analyzed using linear regression.

3. Development of a Mathematical Model for Tumor Oxygen Consumption Rate
3.1 Dynamic Changes of Tumor [HbO;] caused‘by KCl Injection

In our previous report’, we applied Kety’s approach' to evaluate tumor hemodynamics
by using HbO, intervention as a tracer, but we did not consider the effect of tumor oxygen

consumption. In this study, we included tumor oxygen consumption rate in our hemodynamic




model. In principle, the change rate of HbO; in tumor vasculature should be equal to the rate at
which the HbO, concentration is transported by arterial circulation minus the rate at which it is
carried away into the venous drainage minus the rate at which tumor cells consume oxygen. In
common with our previous approach’, we assumed here a one-compartment model: tumor
vasculature is well mixed with respect to oxygen so that a mass balance equation for HbO, can
be written by the following chart. Specifically, if [HbO;] is the oxyhemoglobin concentration in
the tumor at a given time ¢, the general conservation of mass equation for [HbO,] can be

schematically depicted as follows:

Rat; of deirigse of Inflow of Outflow of Consumption rate
2’2’;:,::’%.0111; wmor | = | oxyhemoglobin 1 - | oxyhemoglobin - | of oxyhemoglobin
0 ation 1n tu from artery to vein by tumor cells

vasculature

By using Fick’s Law of diffusion, the above schematic diagram can be written mathematically as

d[HbO, ]
at

= f-[HbO,], - f-[HbO,], -4 -[HbO,], (11)
where [HbO,] = [HbO,](¥) (in an arbitrary unit) is a solution to this differential equation and is a
function of only time because of the one-compartment model, f is the blood perfusion rate
(ml/min/cm’isee), and [HbO,]4 and [HbO,]y are oxyhemoglobin concentrations in the arterial
blood and the venous blood in tumor, respectively, and A is defined as the oxyhemoglobin
dissociation constant (min™").

In Equation (11), we assumed that the oxyhemoglobin dissociation rate is equal to the
tumor oxygen consumption rate at the steady state. This assumption is based on the following

facts: deoxyhemoglobin and oxygen molecules normally combine to form oxyhemoglobin

through a loading reaction that occurs in the lungs. Oxyhemoglobin, in turn, can be dissociated to




be deoxyhemoglobin and free oxygen molecules through an unloading process that occurs in the
tissue capillaries. These two processes can be expressed as the following reversible reaction:

in lungs

Hb + O, : HbO,.
 indissue capillaries

Which direction the reaction will go depends largely on two factors: 1) the pO, of the
environment and 2) the affinity of hemoglobin for oxygen. A high value of pO, drives the
equation to the right side of the reaction to promote oxygen loading, whereas a low pO; in the
tissue capillaries drives the reaction to the left to promote oxygen unloading. The affinity of
hemoglobin for oxygen does not change appreciably over a short period of time (minutes).
Since, in our case, the rat died rapidly by KCl induced cardiac arrest, the reaction went to the left
direction to unload oxygen to the plasma because of lack of oxygen supply from coming blood.
The dissolved oxygen in the plasma, then, was diffused across the tumor capillary walls to the
surrounding tumor tissues, where it was consumed by cellular aerobic respiration.

Let us assume that the rat died instantaneously by KCl induced cardiac arrest; thus, from
this point on, the blood flow stopped, the lungs were no longer functioning, and the gas exchange
between the alveolar air and the blood in pulmonary capillaries ceased. As a result, no more
oxyhemoglobin molecules were transported either to or from the tumor vasculature by systemic
circulation. Mathematically, this means that the tumor blood perfusion rate fis 0 after KCl

administration. Equation (11), therefore, is simplified as

d[HbO,] _

A
7 [HbO, ], (12)

To find the particular solution to Equation (12), we need to know its initial condition. In

this case, the initial condition is given by




[Hb02]|,=0 =[HbO, ]y, (13)
where [HbO,], is the initial baseline value (pre-KCl administration) of oxyhemoglobin

concentration. Rearranging and integrating Equation (12) gives rise to an exponential solution

d[Hb - '
I——[—Q—z-l=—jﬂdt = [HbO,](#)=C e A 14
[HbO, ] |
where C is the constant of integration. By applying the initial condition, eq. (13), to eq. (14), we
obtain the particular solution as follows:
[HbO, () =[HbO, ], -e ¥ . (15)

Equation (15) indicates that following KCl induced cardiac arrest, tumor vascular

oxyhemoglobin concentration [HbO, | decreases exponentially with time, and this process is

characterized by the dissociation constant 4 and the initial oxyhemoglobin concentration
[HbO:]o, both of which can be determined by fitting eq. (15) to the experimental data.

Furthermore, it is useful to introduce the mean lifetime 7, defined as the average time that

~an oxyhemoglobin molecule is likely to survive before it is dissociated with oxygen. The number

of oxyhemoglobin molecules that survive to time ¢ is just [HbO,1(¢), and the number of
oxyhemoglobin molecules that dissociate between ¢ and ¢+ dt is ]d[HbOZ]/ dt|-dt. Thus, the

theoretical mean lifetime 7is given by

[¢-|atEb0, 1/ dt|- at
r=L , (16)
- [larib0,1/ dt- dt
0

10




where ﬂd[HbOz]/ dtl-dt gives the total number of oxyhemoglobin molecules that are
0

dissociated after KCl administration, and ﬂd[HbOz]/ dtl-dt is equal to [HbO,)o. Evaluating
0

Equation (16) gives

N =

0]: -[HbO, ], - (=A)-e™¥ - dt °](,11) e . d(A)
T=2 =0 1 a7
[[HbO, 1, - (~A) - - at j e - d(Af)

0

Equation (17) indicates that the mean lifetime 7 is simply the inverse of the dissociation
constant 4 and is just the time constant of Equation (15), which, therefore, can be rewritten as
[Hboz](i)z[Hboz]o e 18)
Since we only measure relative changes of [HbOz] value, we can express A[HbO;] as:
A[HbO,] = [HbO;] - [HbO]o = - [HbO]o (1-¢7). (19)
In this way, both quantities of [HbO,]o and 7 can be obtained by fitting eq. (19) with the
experimental data taken from the changes in [Hbdz] caused by KCl-induced cardiac arrest. As
seen from this equation, when the measuring time is long, i.e., t=> oo, the stabilized A[HbO;]
reaches the value of A[HbO;],.
3.2 Tumor Oxygen Consumption Rate V"Oz
It is perhaps more important and significant to compute tumor oxXygen consumption

rate VO , from A[HbO,], because it reflects tumor oxygen consumption and metabolic activities.

Tumor oxygen consumption rate V02 is determined by taking the first order derivative of

equation (15) with respect to time ¢,
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_[Hb0,), e _ [HBO,10) 0

7 d ~tlr
V0,(1) =~ | [HbO, ], -e . -

which reflects the number of oxyhemoglobin molecules that are dissociated per unit time at a
particular time ¢. This equation shows that the tumor oxygen consumption is proportional to the
concentration of [HbO;] in our experimental case. In particular, this equation permits direct
quantification of the regular tumor oxygen consumpﬁon rate, VOZ(FO), as being [HbO,]o/7,
which can be obtained by fitting eq. (19) to our e);perimental data. Furthermore, taking
logarithm of eq. (20) leads to
In (VO,) = -t/z+ In[VO, (t=0)]. 1)

This equation demonstrates a linear relationship between the logarithm of tumor oxygen
consumption rate and time after KCL injection with a slope being the inverse of time constant of
A[HbO,] decay after the cardiac arrest.

To facilitate the comparison of the tumor oxygen consumption rates as a function of

tumor volume, we also computed a mean tumor oxygen consumption rate as follows:
T
oy Hb
Vo, = 1 IL——%-e"”dt (22)
T,

where T is the time that it takes for oxyhemoglobin concentration to drop to a steady or
asymptotic minimum value. In order to evaluate the integral, we made an approximation: 7= 37
because tumor oxyhemoglobin concentration dropped to 5% of its initial value within 37 time
and the error introduced by this approximation was minimal. Evaluating eq. (22) with 7= 37

gives

_ 3r
VO, = - f-—[HbOZ]" e Tdt ~ 1(——[Hb02 lo j : (23)
37 0 T 3 T
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Both egs. (20) and (23) indicate that the quantity ([HbO,]¢/7) has an important
physiological significance, representing the transient and mean tumor oxygen consumption rate

and reflects the metabolic activity of the tumor.

4. Experimental Results

Figure 2 shows the KCl effects on tumor vascular A[HbO;] and A[Hb}tm for a
representative mammary adenocarcinoma 13762NF (12.7 cm®). The error bars indicate
measurement uncertainties and are labeled at selected locations. (Some of them are too small to
be seen.) The exponential appearance of the curves matches the solution of the mathematical
model, eq. (19). As shown in the figure, A[HbO,] dropped sharply and significantly by 0.8723 +
0.0002 (p < 0.0001). This suggests that, first of all, the NIR system was highly sensitive to
changes in tumor vascular oxygenation and was capable of providing high temporal resolution
measurement. Secondly, the tumor had a relatively high oxygen consumption rate since the
value of 0.8723 reflects the initial, steady-state value of tumor [HbO,)y without KCl
administration. In contrast, total hemoglobin concentration, [Hb]ia, decreased by 0.0870 +
0.0001, only 10% of the change in [HbO;]. This clearly indicates that total tumor blood volume
remained relatively constant, as compared to [HbO,] during the course of the experiment. This
also shows that the assumption of blood flow f= 0 after KCl injection was reasonable. By fitting
Equation (19) to the data, [HbO,}o and 7 were found to be 0.880 % 0.005 and 0.691 +0.004
(min), respectively. A careful comparison revealed that the overall shape of the A[HbO;] curve
was similar to those obtained by Steen ef al., who used subcutaneously implanted rat 9L
gliosarcoma and pentobarbital overdose.b In addition, the 7 value determined here was of the

same order as reported by Steen ef al.
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Figure 3 shows the time course profiles of tumor vascular A{lHbO;] and A[Hb]ta for an
another mammary adenocarcinoma 13762NF (15.7 cm®). Once again, the NIR system exhibited
a high sensitivity in detecting changes in [HbO;] and [Hblww. In this case, AlHbO,] dropped
even more significantly, by 1.44410.005 (p < 0.0001), while A[Hb]:ota dropped 0.488 = 0.002.
As for the first breast tumor, the magnitude of the drop in A[Hb},tm was much less than that in
A[HbO,], suggesting that the decrease in A[HbO;] was mainly caused by tumor oxygen
consumption instead of the decrease in total tumor blood volume. The values of [HbO,]o and
7 were determined as 1.192 £0.008 and 1.36+ 0.02 (min), respectively, using eq. (19).

The relationship between tumor [HbO,]y and tumor volume for five mammary
adenocarcinomas 13762NF was shown in Figure 4. The straight line is a lihear regression fit to
all the data, illustrating that [HbO;]y increases linearly with an increase in tumor volume. This
makes sense, intuitively, because it simply manifests the fact that the larger the tumor, the more
oxygenated hemoglobin is included in the tumor volume.

Figure 5 shows the relationship between thé mean lifetime or the time constant 7 and
tumor volume. Again, a strong linear relationship (R > 0.91) was obtained. This indicates that,
on average, the time that an oxyhemoglobin molecule is likely to survive before it is dissociated
to yield a deoxyhemoglobin molecule and four free oxygen molecules increases with increasing
tumor volume. This linear relationship suggests that tumor blood perfusion is becoming
increasingly poor as the tumor increases in size and, thus, tumor tissue is becoming increasingly

hypoxic with increasing tumor volume.
Figure 6 shows the relationships between the tumor oxygen consumption rates VO yasa

function of time and tumor volume. To better separate the curves, only the data for the first four

minutes after KCl injection were plotted. Each curve was obtained by substituting corresponding
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[HbO:]o and 7 values to eq. (20). The same relationships were replotted on a semilog graph,
giving straight lines of slope 1/7 (see eq. (21)), as shéwn in Figure 7. From these two figures, it
appeared that smaller tumors had greater oxygen consumption rates before and right after KCl
injection. It is more significant and important to be able to estimate the tumor oxygen

consumption rate when the rats were alive. Considering that the rats were alive at t = 0,
VOZ (alive) was determined by setting t = 0 in eq. (20). Thus, VOz(alive) =V02 t=0)-=
[HbO,]o/7. Figure 8 shows a strong (R = 0.86) inverse linear relationship between V02 (0) and

tumor volume, indicating clearly that the larger the tumor, the smaller its oxygen consumption

rate when the rat was alive before KCI injection. Furthermore, Figure 9 shows the relationship
between the mean tumor oxygen consumption rate V02 and tumor volume after KCl injection.

Once again, a significant correlation was found (R = 0.86), suggesting that, on average, the

tumor oxygen consumption rate decreases with an increase in tumor volume.

5. Discussion and Conclusion

In this study, we developed a mathematical model for computing oxygen consumption
rate in the rat breast tumors and investigated the oxygen dynamics of breast tumors during the
course of KCI cardiac arrest using NIRS. The NIR signal has been found to be very sensitive to
changes in tissue oxygenation in small blood vessels such as arterioles, capillary, and
venules.??'?2% These are the places where the oxygen is consumed by tumor/tissue cells.
Since the rats died rapidly by KCl-induced cardiac arresf, the tumor metabolism or oxygen
consumption was not coupled to the tumor blood flow. Under this condition, Fick's Law was
.applied to extract and quantify the tumor oxygen consumption from the tumor oxygenation

dynamics. Time constant analysis showed that the time constant of oxygenation, T, was related

15




to tumor oxygen consumption. It was found from this study that there was a strong positive
linear relationship between the time constant 7 of oxygenation (A[HbO;]) and tumor volume,
suggesting that tumor perfusion or blood flow was becoming increasingly poor with an increase
of tumor size. Our observation is consistent with other studies, which have reported that blood
perfusion or flow rates of most rodent tumors deprease with increasing tumor size***. However,
a similar relationship has not been found to be true for all human tumors. In this study, we also

found that there existed a negative linear relationship between the mean tumor oxygen

consumption rate VOZ and tumor volume, indicating that the lager the tumor, the smaller the

mean oxygen consumption rate due to its increase of hypoxia fraction. In other words, mean
tumor oxygen consumption rate is decreasing as tumor grows since tumor cells in hypoxic region
have very low oxygen consumpfion rate due to limited oxygen availability.

As shown in eq. (20), tumor oxygen consumption rate 140 , 1s an exponential function of
t and is dependent on both the initial tumor oxy-hemoglobin concentration [HbO,], and the time

constant 7. This means that tumor oxygen consumption rate V02 decreases exponentially with

time after KCl administration. This phenomenon may be explained as follows. As oxygen is
being depleted by tumor cellular metabolism, oxygen concentration or oxygen tension pO,
gradient across tumor capillaries and tissues decreases. Since oxygen diffusion is linearly
proportional to its concentration gradient according to Fick’s Law of diffusion, a lower oxygen
concentration gradient or a lower oxygen tension gradient result in decreased oxygen diffusion
and, thus, less oxygen is available for tumor cellular aerobic respiration. This, in turn, results in
less oxygen consumption and even tumor cell death.

While the present study demonstrates the possibility of evaluating oxygen consumption

rates of tumors by NIRS following KCl administration, the animals have to be scarified to
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perform the measurements. It is possible to estimate tumor oxygen consumption rate without
sacrificing rats if we are able to quantify the blood in-flow and out-flow of the tumors. This is
because the same mathematical models can be utilized to assess oxygen consumption of tumors
by introducing a certain respiratory challenge, such as carbogen or pure oxygen inhalation. In
addition, we have used a single channel NIRS in this study, which provides us with global and
mean values of tumor oxygen consumption rate. However, by using multi-channel NIRS, we
will be able to show the intratumoral heterogeneity of oxygen consumption rate céused by
different perfusion rates in tumors. One of our current research efforts is to develop multi-
channel NIRS imaging systems to study tumor heterogeneities of static and dynamic oxygenation
process under various interventions.

In summary, we have reported the NIRS results from rat breast tumor measurements and
shown significant drops in tumor vascular oxygenation right after KCl induced cardiac arrest.
The tumor oxygen consumption rate was calculated by fitting the developed model with the
measured A[HbO,] data, and a relationship between tumor oxygen consumption rate and tumor
volume was analyzed using linear regression. It was also found that there was a strong negative
linear relationship between the mean tumor oxygen consumption rate and tumor volume,
indicating that a larger tumor has a smaller mean oxygen consumption rate. This study
demonstrates that the NIRS can be an efficient, real-time, non-invasive means to quantify tumor

oxygen consumption rate.
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Figure Captions

Figure 1. Schematic experimental setup of one channel, near infrared, frequency domain IQ
instrument for tumor investigation in vivo. Two fiber bundles were used to deliver and detect the
laser light, at 758 and 785 nm, which were transmitted through the implanted tumor. The
overdose of KCl was administered by i. v. tail injection after 5~10 min of A[HbO,] baseline

measurement.

Figure 2. Effects of overdose KCl injection on tumor vascular A{[HbO;] and A[Hb]t for a
representative breast tumor (12.7 cm®). A[HbO,] dropped rapidly and significantly (p < 0.0001).

Both A[HbO,] and A[Hb]iot are in arbitrary unit.

Figure 3. Effects of overdose KCl injection on tumor vascular A[HbO;] and A[Hb]ot for a

second breast tumor (15.7 cm®).

Figure 4. Relationship between tumor [HbO,]o and tumor volume for five mammary

adenocarcinomas 13762NF.

Figure 5. Relationship between time constant 7and tumor volume for five mammary

adenocarcinomas 13762NF.

Figure 6. Relationships between the tumor oxygen consumption rates as a function of time and

tumor volume.

19




Figure 7. Relationships between the tumor oxygen consumption rates as a function of time and

tumor volume plotted on a semilog scale.

Figure 8. Relationship between tumor oxygen consumption rate at t=0, VOZ (0) and tumor

volume.

Figure 9. Relationship between the mean tumor oxygen consumption rate VOZ and tumor

volume after KCl injection.
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Investigation of breast tumor hemodynamics
using tumor vascular phantoms and FEM simulations
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Abstract: We have developed dynamic tumor vascular phantoms and utilized the finite element
method to investigate the bi-phasic behavior of oxyhemoglobin concentration increase that were
observed in vivo from rat breast tumors during carbogen inhalation.
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1. Introduction

Solid tumors develop regions of hypoxia during their growth due to an imbalance between the rate of tumor cell
proliferation and branching of the blood vessels [1,2]. Tumor hypoxia can contribute to the failure of radiotherapy
[3], some forms of chemotherapy [4] and photodynamic therapy [5]. In addition, a number of clinical trials have
found that patient survival measured either as tumor regression or as local control depends highly on tumor
oxygenation [6]. Therefore, increasing tumor oxygenation could improve cancer therapy efficiency. As one means to
improve tumor oxygenation, breathing hyperoxic gas has been used to enhance cancer treatment efficacy.

Basic on near infrared spectroscopy (NIRS) measurements, our previous in vivo animal study has clearly
demonstrated that carbogen (95% CO, and 5% O,) inhalation can improve the vascular oxygen level of breast
tumors [7]. The observed changes in tumor vascular oxygenation (A[HbO,]) exhibited a rapid increase, followed by
a gradual but significant increase, in response to carbogen intervention. To explain these biphasic behaviors of
tumor hemodynamics, we established a mathematical model based on Kety’s approach [8], and we formed a
hypothesis that tumor vasculature is comprised with a well-perfused and poorly perfused region to explain why there
are two different time constants in the A[HbO,] data. The mathematical model further allows us to associate the
signal amplitudes to the ratio of vascular coefficients and the ratio of the perfusion rates in the two different regions.

Even though we associated our fitting parameters of the NIR measurements mathematically with physiological
factors, such as tumor vascular coefficients and perfusion rates, we did not provide solid validation for the model at
the time. In this study, to further investigate breast tumor vasculature and to interpret the mathematical model, we
designed and developed a tumor hemodynamic phantom for multi-channel NIRS experiments. Furthermore, we
used the FEMLAB software to simulate the dynamic processes of light distribution in tumor hemodynamic
phantoms, giving rise to better understanding of the association between the NIR readings and tumor physiological
parameters.

2. Materials and methods
2.1 Mathematical Model of Tumor Vascular Oxygenation

The mathematical model for tumor vascular oxygenation during carbogen inhalation has been described indetails in
our previous report [7]. Briefly, we followed an approach used to measure regional cerebral blood flow (rCBF) with
diffusible radiotracers, as originally developed by Kety [8] in the 1950°s. By applying Fick’s principle and assuming
that tumor has two distinct perfusion regions, the measured NIRS signal, which has a double- exponential feature
observed in the rat tumor experiments, can be expressed as

AHbO,"™*7(1) = yH[1-exp(-/it/5)] + 7H[1-exp(-£t/15)]
= A[1-exp(-t/1))] + Aj[1-exp(-t/72)], (1)

where H, is the arterial oxygenation input, f; and ¥ are the blood perfusion rate and the vasculature coefficient in
region 1 for the well perfused region, respectively; f, and 7, have the same respective meanings in region 2 for the
poorly perfused region, and A; = yH,, A; = H,, T1 = }/f1, T2 = w/f>. Basically, A, A,, 1), and 1, can be determined
from the NIRS measurements by fitting equation (1) with the experimental data. It follows thatthe ratios of two
vasculature coefficients, y,/y,, and the two blood perfusion rates, f;//,, can be obtained as
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2.2 Tumor Hemodynamic Phantom and Multi-Channel NIR Spectroscopy

To represent vascular blood vessels in tumor, we designed a vascular modeling device (VMD) by winding a
small diameter tube (I.D.=0.51 mm) around a big diameter core tube (O.D.=14.4 mm). Tumor hemodynamic
phantom was fabricated by embedding two VMD:s into a cylindrical shape of gel, which is made of Intralipid and
gelatin powder to represent tissues. The optical properties of tumor gel phantom were measured using near infrared
tissue spectrometer (model: 96208, ISS Inc., Champaign, IL), and those values were close to tissue optical properties
(1.=0.032 cm™, p,’=9.2 cm™ at 750 nm).

Schematic experimental setup for tumor hemodynamic phantom study is shown in Figure 1a . As shown here,
NIR light at 730 nm from a multi-channel NIRS system was delivered to the tumor hemodynamic phantom, and
three optical detectors were placed on the side of cylindrical phantom (D1, D2, and D3 in Fig. 1b) to collect signals,
which were then processed in the computer. A certain amount of ink was injected into the two VMDs by two syringe
pumps (model KDS200, KdScientific Inc., New Hope, PA), and the ink wastes were collected in the waste beaker.
We used two syringe pumps so that we could control different ink flow rates for different VMDs.

3 Detectors

(a) (b) Fast flow Slow flow

Light

- Source

E .........
Multi- -
Processing channel Syringe Waste
Computer NIRS Pumps Phantom Beaker

Fig. 1(a) Schematic diagram of tumor vascular phantom experimental setup. (b) The geometry of FEM snmulanon for
tumor hemodynamic phantom.

2.3 FEM Simulation

To further investigate bi-phasic features of tumor hemodynamics, we used the FEMLAB software (COMSOL
Inc. Burlington, MA), which is based on the finite element method, to simulate our dynamic tumor phantom
experiments. The geometry of FEM simulations for the tumor hemodynamic phantom is shown also in Figure 1b,
and it represents a 2-dimensional horizontal cross section of our tumor vascular phantom. The large circle
represents the body of tumor phantom (diameter = 4 c¢m), and each VMD used in the dynamic phantom is
represented by two thin rectangles (0.1 x 2.4 cm rectangle) within the circle as a blood vessel network: left two
rectangles are for the vessels with a fast flow rate, and right two rectangles denote the vessels with a slow flow rate.

In the simulation, we used a uniform reduced scattermg coefficient of 10 cm™ for both the background and
vasculature. Two absorption coefficients of 0.03 and 1.5 cm™ were used to simulate the phantom and ink absorption
in VMDs, respectively. The FEM model was performed with 1147 elements and 609 nodes and solved for the light
distribution within the vascular phantom dynamically, using the stationary nonlinear solver type.

3. Results

Figure 2a shows the changes of absorption from the three detectors on the tumor hemodynamic phantom. Since two
- VMDs are having same inner diameter (0.51 mm), the velocities of ink in VMDs will be totally depending on the
ink flow rates controlled by the two syringe pumps. The first step for this experiment was injecting ink only into left
VMD with a flow rate of 20 ml/hr. As a result, D2 showed largest increase of Au, while D1 showed smallest
increase of Ap, because D1 was located quite away from the left VMD. For the second step, right VMD was
injected with ink at the same flow rate of 20 ml/hr. Here, D1 showed largest increase of Ay, and D2 showed




smallest increase of Ay,. Then, as the third step, the ink solution was injected into both left and right VMDs with the
same flow rate (20 ml/hr). In all of the above cases, the signals from D3 showed similar profiles as the others,
without clear bi-exponential patterns. For the fourth step, we injected ink into both VMDs, but with two different
flow rates: 5 ml/hr for right VMD and 20 ml/hr for the left VMD. Now we can see that bi-exponential behavior
appears on D3 since D3 is detecting signals from both left and right VMDs, which have two different ink flow rates.

For the further analysis, Ap, increases detected from the three detectors at step 4, as shown in Figure 2a, were
fitted by using our mathematical model to obtain amplitudes and time constants values (Figure 2b). The time
constant analysis shows that the Ap, increases from D1 and D2 are well fitted by the mono-exponential model,
while Ay, increases from D3 is fitted well with the double exponential model, i.e., eq. (1). There exist a fast and
slow time constants with T;= 18.1 £ 0.9 sec and 1,= 134. £ 11 sec from D3, and they are well matched with 1, in D2
(=20.920.5 sec) and t1in D1 (= 131. + 3 sec). All of these suggest that the bi-phasic Ap, signals obtained from D3
with a fast and slow component indeed result from the dynamic changes in both left and right VMDs. We have
further confirmed the same results from the FEM simulations on tumor hemodynamic phantom experiments.
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Fig. 2 (a) Effects of overdose KCl injection on tumor vascular A{HbO,] and A[Hb]. for a breast tumor (12.7 cm®), (b)
relationship between the tumor oxygen consumption rate and tumor volume.

4. Discussion and Conclusions

We have developed dynamic tumor phantom models to demonstrate our hypothesis on tumor hemodynamics
during carbogen inhalation. We believe that the bi-phasic feature of tumor blood oxygenation increases during
carbogen inhalation is highly associated with distinct vascular structures of the tumors, which are composed of well-
perfused and poorly perfused region. We found that the two time constants in tumor hemodynamic models can
result from different blood flow velocities or anything that can cause changes in blood flow velocities, such as blood
vessel diameter and length. Also, the FEM simulation based on light diffusion equation was performed to simulate
the tumor phantom experiments, and the results were well matched with the experiments, further supporting our
previous hypothesis and the mathematical model.
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ABSTRACT

In our previous report, we showed that there was a severe heterogeneity of tumor tissue oxygen dynamics even in a same
tumor by using '’F MR pO, mapping and near-infrared spectroscopy (NIRS). In this study, we applied a three channel
NIRS system to reveal heterogeneity of tumor vascular oxygen dynamics during respiratory challenges. When the
implanted tumor's size reached 3 cm, three photo detectors were attached on the surface of tumors in three different
positions to measure changes in oxygenated hemoglobin concentration ([HbO,]) while the inhaled gas was alternated
between air and carbogen (95% oxygen, 5% CO2). Significant changes in tumor oxygenation were observed
accompanying respiratory challenge, and these changes could be modeled with either one or two exponential
components with fast and slow time constants. Time constant, amplitude, vascular coefficient, and the ratio of perfusion
rate obtained from fitting curves of A[HbO,] measured from three photo detectors revealed that there were indeed
different responses of tumor vascular oxygenation during carbogen inhalation from three different locations. These
results clearly show that tumors are highly heterogeneous in terms of vascular oxygenation response to carbogen
inhalation. This study demonstrates that the NIR technology can provide an efficient, real-time, non-invasive way for
monitoring tumor physiology, and it may have prognostic value and promised insight into tumor vascular development
and angiogenesis.

Keywords: Tumor vascular oxygenation, tumor heterogeneity, NIR Spectroscopy, carbogen

1. INTRODUCTION

Solid tumors develop regions of hypoxia during their growth due to an imbalance between the rate of tumor cell
proliferation and the proliferation and branching of the blood vessels.">® Tumor hypoxia is responsible for the failure of
radiotherapy,® some forms of chemotherapy,” and photodynamic therapy.® In addition, a number of clinical trials have
found that patient survival measured either as tumor regression or as local control depends largely on tumor
oxygenation.” Tumor hypoxia can occurr through diffusion-limited or chronic hypoxia and perfusion-limited or
acute hypoxia.® Therefore, measurement of distribution of tumor perfusion rate could be important for tumor treatment
planning and assessing methods designed to modulate tumor oxygenation.

Solid tumors are known to exhibit heterogeneous blood flow distribution.”'® There are many methods to measure tumor
perfusion heterogeneity, such as Doppler ultrasound,"’ dynamic contrast MRI,'> and the use of tumors grown in
windowed chambers.”® Intensive studies from Mason’s group using '°’F MR pO, mapping have revealed intratumoral
heterogeneity of pO, distribution and also heterogeneous response to hyperoxic gas breathing.'*'>'® The group’s
findings of severe pO, heterogeneity in tumors can indirectly indicate the heterogeneous distribution of blood flow, since
tissue pO, level is decided by a balance between the supply of oxygen from blood vessels and oxygen consumption by
tissue cells.'” Unlike the '°’F MR pO, mapping technique, near-infrared spectroscopy (NIRS) techniques cannot measure




pO, in tissue but can measure in vivo hemoglobin saturation and concentration. NIRS has been applied to
muscle,'’®'%% brain,>>*2? and tumor.24*%

In our previous study, we established a mathematical model of tumor oxygen dynamics during hyperoxic gas, such as
carbogen (95% CO, and 5% O,) or oxygen inhalation.”® For our model, we formed a hypothesis that changes in
oxygenated hemoglobin concentration (A[HbO,]) signal is composed of signals from well-perfused and poorly perfused
region to explain why there are two different time constants to fit the A[HbO,] data using our model. In addition to time
constant, we could get amplitude of fitted curve, ratio of vascular coefficients, and ratio of perfusion rates by applying
our dynamic tumor oxygenation model. Therefore, we will be able to detect intratumoral perfusion heterogeneity by
applying multi-channel NIRS, since each detector’s signal will come from a different region of tumor and, thus, it will
show differences of curve fitting parameters among multi-detectors.

The goals of this study were to measure A[HbO2] in tumor vasculature during carbogen inhalation using a three channel
NIRS system, and to reveal intratumoral vascular heterogeneity by fitting the A[HbO2] data with our mathematical
model. .

2. MATERIALS AND METHODS

2.1 Tumor Model and Measurement

For our study, murine mammary adenocarcinomas 13762NF grown in the hind limb of adult female Fisher 344 rats
(~200 g) were used. Once these tumors reached approximately 2-3 cm in diameter, the rats were anesthetized with 0.2 ml
ketamine hydrochloride (100 mg/ml; Aveco, Fort Dodge, 1A) and maintained under general gaseous anesthesia using a
small animal anesthesia unit with air (1 dm*/min) and 1.3% isoflurane (Ohmeda PPD Inc., Fort Dodge, IA) through a
mask placed over the mouth and nose. After anesthesia, the rat was placed on a warm blanket to maintain body
temperature, which was monitored with a rectally-inserted thermal probe connected to a digital thermometer (Digi-
Sense, model 91100-50, Cole-Parmer Instrument Company, Vernon Hills, IL). Tumors were shaved to improve optical
contact for transmitting light, and a light source and three detectors were attached to the tumor using posts and swivel
post clamps. A pulse oximeter (model: 8600V, Nonin, Inc.) was placed on the hind foot to monitor arterial oxygenation
(S.0,) and heart rate. Figure 1 shows schematic setup for animal experiment using multi channel NIRS system.

Detector Light Source

Inhaled Gas

. 4 1 i
Multi channel 95%0 fl
—T - . o)y, soT1lu-|
r—'h NIRS System Temperature Pulse Oximeter AﬂIS%CO2 I rane

Probe

Figure 1: Schematic experimental setup of animal experiment. One of three detectors is placed opposite of the light source to detect
light in transmission mode, and the other two were located in the semi-reflection mode.

All measurements were performed in the dark room, and measurements were initiated while the rats breathed air for 10
minutes to get a stable baseline. After 10 min of baseline measurement, the inhaled gas was switched to carbogen for
15 minutes, and then back to air for 15 minutes. Tumor volume V (in cm’) was estimated as V = (4n/3) [(L+W-+H)/6],%
where L, W, and H are the three respective orthogonal dimensions. Raw amplitude data from three detectors were
recorded simultaneously during the experiments, and processed after the experiments to obtain the changes in




oxygenated hemoglobin concentration (A[HbO,]) and total hemoglobin concentration (A[Hbu]). Time constant,
amplitude, v,/y,, and fi/f; were calculated by fitting the data using Kaleidagraph software (Synergy Software, Reading,
PA).

2.2 Multi-Channel NIR Spectroscopy

Our multi-channel NIR spectroscopy system has one light source and eight detectors to measure light signals from eight
different locations, but due to tumor versus detector size constraints and to simplify the experiment, we only used three
detectors to monitor tumor vascular oxygen dynamics during respiratory challenges.. In common with our previous
work??, we assume that oxyhemoglobin and deoxyhemoglobin are the only significant absorbance materials in the
blood. The absorption coefficients comprise the extinction coefficients for deoxyhemoglobin and oxyhemoglobin -
multiplied by their respective concentrations (Eqgs. 1 and 2).

”azo =g, [Hb] + GHbm;zz[Hbozl, ¢y
1 = e [Hb] + £1100° [HO,] - )]

The data presented in this paper were analyzed using modified Beer-Lambert’s law and amplitude values to find the
changes in absorption (Eq. 3). By manipulating Equations 1-3, changes in oxygenated hemoglobin, deoxygenated
hemoglobin and total hemoglobin concentrations were calculated from the transmitted amplitude of the light through the
tumor (Egs. 4, 5 and 6).

Map - Har = log (Ag/A) /L, 3)
A[HbBO,] = [-0.674*I0g (A/A.)" + 1.117*log (A/A )" 1/L, (@)
A[Hb] = [0.994*log (A/A,) " - 0.376*log (A/A,) 1/L, )
A[Hb],, = A[Hb] + A[HbO]=[0.32*log (A/A,)  +0.741*log (A/A,) 1/L, 6)

where Ap = baseline amplitude; Ar = transition amplitude; L. = optical pathlength between source/detector. The
constants were computed with the extinction coefficients for oxy and deoxyhemoglobin at the two wavelengths used.?
In principle, L should be equal to the source—detector separation, d, multiplied by a differential pathlength factor (DPF),
i.e., L=d*DPF. Little is known about DPF for tumors, although a DPF value of 2.5 has been used by others.>®  Since our
focus is on dynamic changes and relative values of tumor [HbO,] with respect to carbogen intervention, we have taken
the approach of including the DPF in the unit, i.e., modifying eq. (4) as follows:

A[HbO;] = [-0.674*log (A/A,) " + 1.117*log (A/A ) 1/ d, 0
where d is the direct source-detector separation in cm, and the unit of A[HbO,] in Eq. (7) is mM/DPF.

2.3 Mathematical Model of Tumor Vascular Oxygenation

In our previous report,”®® we followed an approach used to measure regional cerebral blood flow (rCBF) with diffusible

radiotracers, as originally developed by Kety®' in the 1950’s, to develop our model. By applying Fick’s principle and
defining y as the ratio of HbO, concentration changes in the vascular bed to that in veins, which is equal to
(AHBO,"™*"*"")/( AHbO,"™), we could get Eq. (8) as follows:

AHbO, ™" (1) = yH [ 1-exp(-fi/y)] = Ai[1-exp(-1/1,)] ®¥)
where yis the vasculature coefficient of the tumor, H, is the arterial oxygenation input and fis the blood perfusion rate.
If a tumor has two distinct perfusion regions, and the measured signal is from both regions (Figure 2), then it is

reasonable that we will get two different blood perfusion rates f; and f;, two different vasculature coefficients % and 7,
or all four. Therefore, Eq. (8) can be modified to double exponential expression as




AHbO,"™*%(f) = yH [ 1-exp(<fit/11)] + pH,[1-exp(-£t/12)]
= A [1-exp(-t/11)] + As[1-exp(-t/1;)] )

where f; and y are the blood perfusion rate and the vasculature coefficient, respectively, in region 1, £ and p; are the
same for region 2, and A, = yH,, A, = pH,, 17, = ¥/ fi, T2 = p/f. Then, if Ay, A;, 1,, and 1, are determined from our
measurements, we can obtain the ratios of two vasculature coefficients and the two blood perfusion rates:

7’_1____£L LzAl/AZ . (10)

2

7, 4, £ 71/12

With these two ratios, we will be able to understand more about tumor physiology such as vasculature and blood
perfusion. In this report, we used three-channel NIR spectroscopy to explore the intratumoral heterogeneity of
vasculature by obtaining A, A,, 7, and 1, from three different locations on tumors.

Light Source

Well-Perfused Region
A= A[l1-exp(-t/7,))]

Poorly Perfused Region
B = A,[1-exp(—t/7,)]

Photon Migration Pattern

Tumor

Light Detectors ~ AHbO, = A+ B = A[1—exp(—t/7)]+ 4,[1 - exp(—t/7,)]

Fig. 2 Schematic diagram of two-region tumor model. If tumor has two distinct regions in terms of perfusion rate, the detector will get
signal from both regions, and the signal can be fitted with double exponential expression.

3. RESULTS

Figure 3(a) shows the A[HbO,] obtained from three detectors in a breast tumor (16.6 cm®), with a source-detector
separation of 1.5 cm for detector #1, 2.5 cm for detector #2, and 2.8 cm for detector #3, respectively. The measurement
uncertainties are shown at only discrete locations. After 10 min of air breathing measurement as a baseline, inhaled gas
was switched from air to carbogen, which caused a sharp increase in A[HbO,] (p < 0.0001 after 1 min from gas switch)
followed by a further slow, gradual, but significant, increase over the next 15 min (P < 0.0001).

The rising part of A[HbO,] from detector #1, #2, and #3 after gas switch from air to carbogen and the fitted curves are
shown in Figure 3(b) — 3(d), respectively. We used single-exponential (Eq. 8) and double-exponential expressions (Eq.
9) to fit the data of rising portion of A[HbO,] and it appears that double-exponential expression gives a much better fit,
as is confirmed by the respective R* values [0.95 ~ 0.96 versus 0.79 ~ 0.84 (not shown in the table 1)].
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Fig. 3 Dynamic changes of [HbO,] from three detectors in a rat breast (volume: 16.6 cm®) tumor. Dotted vertical lines mark the point
when the gas was changed [Fig. 3(a)]. The rising part of AJHbO,] from detectors was fitted using both single-exponential and double-
exponential expressions and Fig. 3(b)-3(d) are from detector #1-#3, respectively.

Table 1. Summary of vascular oxygen dynamics from three detectors from Figure 3

Double-Exponential fitting AHbO, = A [1-exp(-t/1;)] + A[1-exp(-t/1,)]

Parameters Detector #1 Detector #2 Detector #3
Separation: d (cm) 1.5 2.5 2.8
A (mM/DPF) 0.037 £ 0.0004 0.0125 £ 0.00022 0.0134 +0.00016
T; (min) 0.24+0.011 0.3+0.019 0.27+£0.011
A, (mM/DPF) 0.02 £ 0.0005 0.013 + 0.00035 0.006 + 0.00013
1, (min) 8.27+0.721 9.87£0.835 7+0.58
x? 0.0045 0.001 0.00046
R? . 0.95 0.96 0.95
W= AJA; 1.85 £ 0.065 0.96 £ 0.045 2.23+0.08
TI/T, 0.029 + 0.0035 0.03 £ 0.0038 0.039 £0.0048
Sl = (AVA) (/7o) 63.75 + 8.83 31.58 +£4.51 57.81+8.72
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Fig. 4 Dynamic changes of {HbO,] from three detectors in another rat breast (volume: 20.6 cm®) tumor. Dotted vertical lines mark the
point when the gas was changed [Fig. 4(a)]. Figures 3(b)-3(d) show the rising part of A[HbO,] after gas switch from air to carbogen,
and fitted curves in detector #1-#3, respectively.

Table 2. Summary of vascular oxygen dynamics from three detectors from Figure 4

Double-Exponential fitting AHbO, = A [1-exp(-t/1;)] + A,[1-exp(-t/1,)]
Parameters Detector #1 Detector #2 Detector #3
Separation: d (cm) 2 25 3
A, (mM/DPF) 0.01 £ 0.0003 0.0072 £ 0.00012 0.0023 £ 0.00014
7; (min) 0.27 £0.026 0.43 £0.02 0.16 £ 0.042
A, (mM/DPF) 0.033 £ 0.0003 0.021 £0.0017 0.017 £ 0.0001
T, (min) 4.65+0.1 22,98 +2.83 6.08 £0.161
x’ 0.00093 0.00019 0.00031
R’ 0.99 0.99 0.99
Yi/v2= AJ/A, 0.303 £0.0118 0.343 £0.0309 0.135 £ 0.0089
Ti/T2 0.058 + 0.0066 0.0187 £ 0.00280 .026 £ 0.0071
Nl = (AVAD (/1) 522+0.71 18.33 +3.81 5.13+£1.32




By manipulating time constants and amplitudes, we can get physiologically meaningful parameters such as y/y,= A)/A,
and fi/f> = (Ay/A,)/(t)/72) (Eq. 10). Time constants and amplitudes from three fitted curves are summarized in the Table 1
to describe tumor vascular structure and blood perfusion. When ¥,/y, is close to 1, it implies that the measured signal
results equally from both region 1 and 2 [Figure 3(c)], and if y/y, > 1, then the measured signal results more from region
1 than region 2 [Figure 3(b) and 3(d)]. All the ratios of £i/f; in Figure 3(b) — 3(d) are much greater than 1, which indicate
the blood perfusion rate in region 1 is much higher than that in region 2.

Figure 4 depicts A[HbO,] obtained from another breast tumor (20.6 cm®). The fast and significant increases of A[HbO,]
after switching gas from air to carbogen are similar to those from tumor in Figure 3, and also double-exponential fitting
shows better fitness compared to single-exponential expression. However, as can be seen from Table 2, this tumor has
several different characteristics compared to tumor in Figure 3. First, this tumor has very different values of time
constants between detectors, while the tumor in Figure 3 has close values of time constants between detectors. Fast time
constants in Figure 3 are 0.24, 0.3, and 0.27 min, and slow time constants in Figure 3 are 8.27, 9.87, and 7 min, which
are close to each other between detectors, but tumor in Figure 4 shows very different values of time constant between
detectors. Fast time constants in Figure 4 are 0.27, 0.43, and 0.16 min, and slow time constants in Figure 4 are 4.65,
22.98, and 6.08 min. In addition to time constants, the y,/y, and fi/f; are also very different from those in the Table 1.
Figures 4(b)-4(d) have y,/y, <1 while only Figure 3(c) has y,/y; <1, which implies that signals from all three detectors in
Figure 4 are mainly from region 2 rather than region 1. The ratios of perfusion rate in Figure 4, fi/f;, are also much
smaller than those from tumor in Figure 3.

4. DISCUSSION

We have seen intrtumoral heterogeneity in terms of tissue pO, using '°F MR pO, mapping via reports from Dr. Mason’s
research group.'*>'® ”F MR pO, mapping technique clearly showed that tumor tissue has a wide distribution of pO,,
and also different responses to respiratory challenges even within a tumor. Tissue pO, is mainly decided by the balance
between the supply of oxygen from blood vessels and the oxygen consumption by tissue cells. With assumption of
constant oxygen consumption during gas switch from air to carbogen, tumor tissue pO, will be mainly dependent of
blood oxygen level changes.

NIRS is a portable, low cost, and real time measurement system that can measure changes of blood oxygen level by
using two wavelengths. We have used a NIRS system that has one light source and one detector so that we could have
global measurement of A[HbO,] and A[Hby,] in tumor during respiratory challenges.”*® Through our previous
experiments, we have found that most of tumors have bi-phasic behavior of A[HbO,] increase (rapid increase followed
by a slow and gradual increase) after switching the gas from air to carbogen or air to 100% oxygen. To explain this bi-
phasic behavior, we formed a hypothesis that the bi-phasic behavior of A[HbO,] increase during carbogen or oxygen
inhalation results from two different regions in tumors in terms of blood perfusion rate and vascular structure, and we
developed a mathematical model to get physiologically meaningful parameters from experimental data.

The region in tumor that has fast blood perfusion rate, £;, and high ratio of AJHbO,]***"*™" and A[HbO,]"", 11, is called
region 1, while region 2 represents the region that has slow blood perfusion rate, f;, and low ratio of A[HbO,]"**!*""® and
A[HbO,]**™, y,. Thus, the ratio of y; and v, can be simply thought of as a ratio of region 1 volume to region 2
volume. In other words, when vy,/y, = 1, it implies that the light penetrated tumor volume consists of 50% well-perfused
region and 50% poorly perfused region. If v,/y, is smaller than 1 or larger than 1, this means the measured signal results
mostly from poorly perfused region, or well-perfused region, respectively. Therefore, by looking at these two ratios
between detectors from Table 1 and 2, we can find the intratumoral heterogeneity in terms of blood perfusion rate and
proportion of either well-perfused region or poorly perfused region.

For instance, y,/v, from detector #2 is the lowest value among three detectors in Figure 3, which means that the light
transmitted tumor volume between light source and detector #2 has less well perfused region than those volumes
detected by detector #1 and #3. Detector #2 also has lowest fi/f, compare to two other detectors. These implies that
tumor volume detected by detector #2 in Figure 3 has relatively low portion of well oxygenated region compare to those
detected by detector #1 and #3, and it caused lowest f;/f; among three detectors. Table 2 also can show the intratumoral




heterogeneity in Figure 4. However, in this case, detector #2 shows highest y,/y, and fi/f, among three detectors, which
means that tumor volume detected by detector #2 in Figure 4 has more well oxygenated region than those detected by
detector #1 and #3. Both detector #2s in the Figures 3 and 4 are placed on tumors in semi transmittance mode, but their
detected tumor volumes have totally different vasculature.

Additionally, we can also find the heterogeneity between two different tumors by comparing those fitted parameters. For
instance, a large proportion of tumor in Fig. 3 consists of well-perfused region (yi/y; = 0.96 ~ 2.23) while tumor in
Figure 4 is mostly composed of poorly perfused region (yi/y; = 0.135 ~ 0.343). In the case of tumor in Figure 3, the
blood perfusion rate in the well-perfused region is much faster than in the poorly perfused region, while the ratio of
blood perfusion rate between well-perfused region and poorly perfused region from tumor in Figure 4 (/i/, = 5.13 ~
18.33) is not as high as tumor in Figure 3 (fi/f; = 31.58 ~ 63.75). All of these results show that tumor vasculature vary
significantly in terms of perfusion rate between each tumor and also within each individual tumor.

5. CONCLUSION

We applied a three channel NIRS system to show the heterogeneity of tumor vasculature in terms of blood perfusion rate
and vascular coefficients. All detectors on tumor showed a sharp increase of A[HbO,] that was followed by slow and
gradual increase. However, the differences between the signals from three detectors could be found by applying our
mathematical model to fit the AlHbO,] data during carbogen inhalation. Although all signals from three detectors in both
Figures 3 and 4 showed bi-phasic behavior of A[HbO,], their time constants and ratio of v,/y, and fi/f, revealed that
tumor vasculature is not homogeneous and, indeed, it is heterogeneous with respect to blood perfusion rate and
proportion of well-perfused region in tumor. Our future study will be conducted to prove our hypothesis on the bi-phasic
behavior of A[HbO,] during carbogen inhalation and to learn more about meaning of time constant, amplitude, y,/y,, and
Jilfz from our mathematical model.
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